Abstract:The Tor darknet hosts different types of illegal content, which are monitored by cybersecurity agencies. However, manually classifying Tor content can be slow and error-prone. To support this task, we introduce Frequency-Dominant Neighborhood Structure (F-DNS), a new perceptual hashing method for automatically classifying domains by their screenshots. First, we evaluated F-DNS using images subject to various content preserving operations. We compared them with their original images, achieving better correlation coefficients than other state-of-the-art methods, especially in the case of rotation. Then, we applied F-DNS to categorize Tor domains using the Darknet Usage Service Images-2K (DUSI-2K), a dataset with screenshots of active Tor service domains. Finally, we measured the performance of F-DNS against an image classification approach and a state-of-the-art hashing method. Our proposal obtained 98.75% accuracy in Tor images, surpassing all other methods compared.
Abstract:Industrial Control Systems depend heavily on security and monitoring protocols. Several tools are available for this purpose, which scout vulnerabilities and take screenshots from various control panels for later analysis. However, they do not adequately classify images into specific control groups, which can difficult operations performed by manual operators. In order to solve this problem, we use transfer learning with five CNN architectures, pre-trained on Imagenet, to determine which one best classifies screenshots obtained from Industrial Controls Systems. Using 337 manually labeled images, we train these architectures and study their performance both in accuracy and CPU and GPU time. We find out that MobilenetV1 is the best architecture based on its 97,95% of F1-Score, and its speed on CPU with 0.47 seconds per image. In systems where time is critical and GPU is available, VGG16 is preferable because it takes 0.04 seconds to process images, but dropping performance to 87,67%.
Abstract:The information technology revolution has facilitated reaching pornographic material for everyone, including minors who are the most vulnerable in case they were abused. Accuracy and time performance are features desired by forensic tools oriented to child sexual abuse detection, whose main components may rely on image or video classifiers. In this paper, we identify which are the hardware and software requirements that may affect the performance of a forensic tool. We evaluated the adult porn classifier proposed by Yahoo, based on Deep Learning, into two different OS and four Hardware configurations, with two and four different CPU and GPU, respectively. The classification speed on Ubuntu Operating System is $~5$ and $~2$ times faster than on Windows 10, when a CPU and GPU are used, respectively. We demonstrate the superiority of a GPU-based machine rather than a CPU-based one, being $7$ to $8$ times faster. Finally, we prove that the upward and downward interpolation process conducted while resizing the input images do not influence the performance of the selected prediction model.
Abstract:Name entity recognition in noisy user-generated texts is a difficult task usually enhanced by incorporating an external resource of information, such as gazetteers. However, gazetteers are task-specific, and they are expensive to build and maintain. This paper adopts and improves the approach of Aguilar et al. by presenting a novel feature, called Local Distance Neighbor, which substitutes gazetteers. We tested the new approach on the W-NUT-2017 dataset, obtaining state-of-the-art results for the Group, Person and Product categories of Named Entities. Next, we added 851 manually labeled samples to the W-NUT-2017 dataset to account for named entities in the Tor Darknet related to weapons and drug selling. Finally, our proposal achieved an entity and surface F1 scores of 52.96% and 50.57% on this extended dataset, demonstrating its usefulness for Law Enforcement Agencies to detect named entities in the Tor hidden services.