Abstract:Prostate cancer (PCa) detection using deep learning (DL) models has shown potential for enhancing real-time guidance during biopsies. However, prostate ultrasound images lack pixel-level cancer annotations, introducing label noise. Current approaches often focus on limited regions of interest (ROIs), disregarding anatomical context necessary for accurate diagnosis. Foundation models can overcome this limitation by analyzing entire images to capture global spatial relationships; however, they still encounter challenges stemming from the weak labels associated with coarse pathology annotations in ultrasound data. We introduce Cinepro, a novel framework that strengthens foundation models' ability to localize PCa in ultrasound cineloops. Cinepro adapts robust training by integrating the proportion of cancer tissue reported by pathology in a biopsy core into its loss function to address label noise, providing a more nuanced supervision. Additionally, it leverages temporal data across multiple frames to apply robust augmentations, enhancing the model's ability to learn stable cancer-related features. Cinepro demonstrates superior performance on a multi-center prostate ultrasound dataset, achieving an AUROC of 77.1% and a balanced accuracy of 83.8%, surpassing current benchmarks. These findings underscore Cinepro's promise in advancing foundation models for weakly labeled ultrasound data.
Abstract:Prostate Cancer (PCa) is often diagnosed using High-resolution 3.0 Tesla(T) MRI, which has been widely established in clinics. However, there are still many medical centers that use 1.5T MRI units in the actual diagnostic process of PCa. In the past few years, deep learning-based models have been proven to be efficient on the PCa classification task and can be successfully used to support radiologists during the diagnostic process. However, training such models often requires a vast amount of data, and sometimes it is unobtainable in practice. Additionally, multi-source MRIs can pose challenges due to cross-domain distribution differences. In this paper, we have presented a novel approach for unpaired image-to-image translation of prostate mp-MRI for classifying clinically significant PCa, to be applied in data-constrained settings. First, we introduce domain transfer, a novel pipeline to translate unpaired 3.0T multi-parametric prostate MRIs to 1.5T, to increase the number of training data. Second, we estimate the uncertainty of our models through an evidential deep learning approach; and leverage the dataset filtering technique during the training process. Furthermore, we introduce a simple, yet efficient Evidential Focal Loss that incorporates the focal loss with evidential uncertainty to train our model. Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work (98.4% vs. 76.2%). We envision that providing prediction uncertainty to radiologists may help them focus more on uncertain cases and thus expedite the diagnostic process effectively. Our code is available at https://github.com/med-i-lab/DT_UE_PCa