Abstract:Prostate Cancer (PCa) is often diagnosed using High-resolution 3.0 Tesla(T) MRI, which has been widely established in clinics. However, there are still many medical centers that use 1.5T MRI units in the actual diagnostic process of PCa. In the past few years, deep learning-based models have been proven to be efficient on the PCa classification task and can be successfully used to support radiologists during the diagnostic process. However, training such models often requires a vast amount of data, and sometimes it is unobtainable in practice. Additionally, multi-source MRIs can pose challenges due to cross-domain distribution differences. In this paper, we have presented a novel approach for unpaired image-to-image translation of prostate mp-MRI for classifying clinically significant PCa, to be applied in data-constrained settings. First, we introduce domain transfer, a novel pipeline to translate unpaired 3.0T multi-parametric prostate MRIs to 1.5T, to increase the number of training data. Second, we estimate the uncertainty of our models through an evidential deep learning approach; and leverage the dataset filtering technique during the training process. Furthermore, we introduce a simple, yet efficient Evidential Focal Loss that incorporates the focal loss with evidential uncertainty to train our model. Our experiments demonstrate that the proposed method significantly improves the Area Under ROC Curve (AUC) by over 20% compared to the previous work (98.4% vs. 76.2%). We envision that providing prediction uncertainty to radiologists may help them focus more on uncertain cases and thus expedite the diagnostic process effectively. Our code is available at https://github.com/med-i-lab/DT_UE_PCa