Abstract:End-to-end autonomous driving has emerged as a promising paradigm integrating perception, decision-making, and control within a unified learning framework. Recently, Vision-Language Models (VLMs) have gained significant attention for their potential to enhance the robustness and generalization of end-to-end driving models in diverse and unseen scenarios. However, existing VLM-based approaches still face challenges, including suboptimal lane perception, language understanding biases, and difficulties in handling corner cases. To address these issues, we propose AppleVLM, an advanced perception and planning-enhanced VLM model for robust end-to-end driving. AppleVLM introduces a novel vision encoder and a planning strategy encoder to improve perception and decision-making. Firstly, the vision encoder fuses spatial-temporal information from multi-view images across multiple timesteps using a deformable transformer mechanism, enhancing robustness to camera variations and facilitating scalable deployment across different vehicle platforms. Secondly, unlike traditional VLM-based approaches, AppleVLM introduces a dedicated planning modality that encodes explicit Bird's-Eye-View spatial information, mitigating language biases in navigation instructions. Finally, a VLM decoder fine-tuned by a hierarchical Chain-of-Thought integrates vision, language, and planning features to output robust driving waypoints. We evaluate AppleVLM in closed-loop experiments on two CARLA benchmarks, achieving state-of-the-art driving performance. Furthermore, we deploy AppleVLM on an AGV platform and successfully showcase real-world end-to-end autonomous driving in complex outdoor environments.
Abstract:We present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.