Abstract:Intrigued by the inherent ability of the human visual system to identify salient regions in complex scenes, attention mechanisms have been seamlessly integrated into various Computer Vision (CV) tasks. Building upon this paradigm, Vision Transformer (ViT) networks exploit attention mechanisms for improved efficiency. This review navigates the landscape of redesigned attention mechanisms within ViTs, aiming to enhance their performance. This paper provides a comprehensive exploration of techniques and insights for designing attention mechanisms, systematically reviewing recent literature in the field of CV. This survey begins with an introduction to the theoretical foundations and fundamental concepts underlying attention mechanisms. We then present a systematic taxonomy of various attention mechanisms within ViTs, employing redesigned approaches. A multi-perspective categorization is proposed based on their application, objectives, and the type of attention applied. The analysis includes an exploration of the novelty, strengths, weaknesses, and an in-depth evaluation of the different proposed strategies. This culminates in the development of taxonomies that highlight key properties and contributions. Finally, we gather the reviewed studies along with their available open-source implementations at our \href{https://github.com/mindflow-institue/Awesome-Attention-Mechanism-in-Medical-Imaging}{GitHub}\footnote{\url{https://github.com/xmindflow/Awesome-Attention-Mechanism-in-Medical-Imaging}}. We aim to regularly update it with the most recent relevant papers.
Abstract:Transformers have recently gained attention in the computer vision domain due to their ability to model long-range dependencies. However, the self-attention mechanism, which is the core part of the Transformer model, usually suffers from quadratic computational complexity with respect to the number of tokens. Many architectures attempt to reduce model complexity by limiting the self-attention mechanism to local regions or by redesigning the tokenization process. In this paper, we propose DAE-Former, a novel method that seeks to provide an alternative perspective by efficiently designing the self-attention mechanism. More specifically, we reformulate the self-attention mechanism to capture both spatial and channel relations across the whole feature dimension while staying computationally efficient. Furthermore, we redesign the skip connection path by including the cross-attention module to ensure the feature reusability and enhance the localization power. Our method outperforms state-of-the-art methods on multi-organ cardiac and skin lesion segmentation datasets without requiring pre-training weights. The code is publicly available at https://github.com/mindflow-institue/DAEFormer.