Abstract:The global deployment of large language models (LLMs) has raised concerns about cultural misalignment, yet the linguistic properties of fine-tuning datasets used for cultural adaptation remain poorly understood. We adopt a dataset-centric view of cultural alignment and ask which linguistic properties of fine-tuning data are associated with cultural performance, whether these properties are predictive prior to training, and how these effects vary across models. We compute lightweight linguistic, semantic, and structural metrics for Arabic, Chinese, and Japanese datasets and apply principal component analysis separately within each language. This design ensures that the resulting components capture variation among datasets written in the same language rather than differences between languages. The resulting components correspond to broadly interpretable axes related to semantic coherence, surface-level lexical and syntactic diversity, and lexical or structural richness, though their composition varies across languages. We fine-tune three major LLM families (LLaMA, Mistral, DeepSeek) and evaluate them on benchmarks of cultural knowledge, values, and norms. While PCA components correlate with downstream performance, these associations are strongly model-dependent. Through controlled subset interventions, we show that lexical-oriented components (PC3) are the most robust, yielding more consistent performance across models and benchmarks, whereas emphasizing semantic or diversity extremes (PC1-PC2) is often neutral or harmful.
Abstract:Large Language Model (LLM) alignment conventionally relies on supervised fine-tuning or reinforcement learning based alignment frameworks. These methods typically require labeled or preference datasets and involve updating model weights to align the LLM with the training objective or reward model. Meanwhile, in social sciences such as cross-cultural studies, factor analysis is widely used to uncover underlying dimensions or latent variables that explain observed patterns in survey data. The non-differentiable nature of these measurements deriving from survey data renders the former alignment methods infeasible for alignment with cultural dimensions. To overcome this, we propose a parameter efficient strategy that combines soft prompt tuning, which freezes the model parameters while modifying the input prompt embeddings, with Differential Evolution (DE), a black-box optimization method for cases where a differentiable objective is unattainable. This strategy ensures alignment consistency without the need for preference data or model parameter updates, significantly enhancing efficiency and mitigating overfitting. Our method demonstrates significant improvements in LLama-3-8B-Instruct's cultural dimensions across multiple regions, outperforming both the Naive LLM and the In-context Learning (ICL) baseline, and effectively bridges computational models with human cultural nuances.




Abstract:The swift progress and widespread acceptance of artificial intelligence (AI) systems highlight a pressing requirement to comprehend both the capabilities and potential risks associated with AI. Given the linguistic complexity, cultural richness, and underrepresented status of Arabic in AI research, there is a pressing need to focus on Large Language Models (LLMs) performance and safety for Arabic related tasks. Despite some progress in their development, there is a lack of comprehensive trustworthiness evaluation benchmarks which presents a major challenge in accurately assessing and improving the safety of LLMs when prompted in Arabic. In this paper, we introduce AraTrust, the first comprehensive trustworthiness benchmark for LLMs in Arabic. AraTrust comprises 516 human-written multiple-choice questions addressing diverse dimensions related to truthfulness, ethics, safety, physical health, mental health, unfairness, illegal activities, privacy, and offensive language. We evaluated a set of LLMs against our benchmark to assess their trustworthiness. GPT-4 was the most trustworthy LLM, while open-source models, particularly AceGPT 7B and Jais 13B, struggled to achieve a score of 60% in our benchmark.