Abstract:Missing values in real-world data pose a significant and unique challenge to algorithmic fairness. Different demographic groups may be unequally affected by missing data, and the standard procedure for handling missing values where first data is imputed, then the imputed data is used for classification -- a procedure referred to as "impute-then-classify" -- can exacerbate discrimination. In this paper, we analyze how missing values affect algorithmic fairness. We first prove that training a classifier from imputed data can significantly worsen the achievable values of group fairness and average accuracy. This is because imputing data results in the loss of the missing pattern of the data, which often conveys information about the predictive label. We present scalable and adaptive algorithms for fair classification with missing values. These algorithms can be combined with any preexisting fairness-intervention algorithm to handle all possible missing patterns while preserving information encoded within the missing patterns. Numerical experiments with state-of-the-art fairness interventions demonstrate that our adaptive algorithms consistently achieve higher fairness and accuracy than impute-then-classify across different datasets.
Abstract:We determine sharp bounds on the price of bandit feedback for several variants of the mistake-bound model. The first part of the paper presents bounds on the $r$-input weak reinforcement model and the $r$-input delayed, ambiguous reinforcement model. In both models, the adversary gives $r$ inputs in each round and only indicates a correct answer if all $r$ guesses are correct. The only difference between the two models is that in the delayed, ambiguous model, the learner must answer each input before receiving the next input of the round, while the learner receives all $r$ inputs at once in the weak reinforcement model. In the second part of the paper, we introduce models for online learning with permutation patterns, in which a learner attempts to learn a permutation from a set of permutations by guessing statistics related to sub-permutations. For these permutation models, we prove sharp bounds on the price of bandit feedback.
Abstract:Mainstream machine learning conferences have seen a dramatic increase in the number of participants, along with a growing range of perspectives, in recent years. Members of the machine learning community are likely to overhear allegations ranging from randomness of acceptance decisions to institutional bias. In this work, we critically analyze the review process through a comprehensive study of papers submitted to ICLR between 2017 and 2020. We quantify reproducibility/randomness in review scores and acceptance decisions, and examine whether scores correlate with paper impact. Our findings suggest strong institutional bias in accept/reject decisions, even after controlling for paper quality. Furthermore, we find evidence for a gender gap, with female authors receiving lower scores, lower acceptance rates, and fewer citations per paper than their male counterparts. We conclude our work with recommendations for future conference organizers.
Abstract:Mainstream machine learning conferences have seen a dramatic increase in the number of participants, along with a growing range of perspectives, in recent years. Members of the machine learning community are likely to overhear allegations ranging from randomness of acceptance decisions to institutional bias. In this work, we critically analyze the review process through a comprehensive study of papers submitted to ICLR between 2017 and 2020. We quantify reproducibility/randomness in review scores and acceptance decisions, and examine whether scores correlate with paper impact. Our findings suggest strong institutional bias in accept/reject decisions, even after controlling for paper quality. Furthermore, we find evidence for a gender gap, with female authors receiving lower scores, lower acceptance rates, and fewer citations per paper than their male counterparts. We conclude our work with recommendations for future conference organizers.