Abstract:Low self-esteem and interpersonal needs (i.e., thwarted belongingness (TB) and perceived burdensomeness (PB)) have a major impact on depression and suicide attempts. Individuals seek social connectedness on social media to boost and alleviate their loneliness. Social media platforms allow people to express their thoughts, experiences, beliefs, and emotions. Prior studies on mental health from social media have focused on symptoms, causes, and disorders. Whereas an initial screening of social media content for interpersonal risk factors and low self-esteem may raise early alerts and assign therapists to at-risk users of mental disturbance. Standardized scales measure self-esteem and interpersonal needs from questions created using psychological theories. In the current research, we introduce a psychology-grounded and expertly annotated dataset, LoST: Low Self esTeem, to study and detect low self-esteem on Reddit. Through an annotation approach involving checks on coherence, correctness, consistency, and reliability, we ensure gold-standard for supervised learning. We present results from different deep language models tested using two data augmentation techniques. Our findings suggest developing a class of language models that infuses psychological and clinical knowledge.
Abstract:After the pandemic, artificial intelligence (AI) powered support for mental health care has become increasingly important. The breadth and complexity of significant challenges required to provide adequate care involve: (a) Personalized patient understanding, (b) Safety-constrained and medically validated chatbot patient interactions, and (c) Support for continued feedback-based refinements in design using chatbot-patient interactions. We propose Alleviate, a chatbot designed to assist patients suffering from mental health challenges with personalized care and assist clinicians with understanding their patients better. Alleviate draws from an array of publicly available clinically valid mental-health texts and databases, allowing Alleviate to make medically sound and informed decisions. In addition, Alleviate's modular design and explainable decision-making lends itself to robust and continued feedback-based refinements to its design. In this paper, we explain the different modules of Alleviate and submit a short video demonstrating Alleviate's capabilities to help patients and clinicians understand each other better to facilitate optimal care strategies.