Abstract:Conformalized Quantile Regression (CQR) is a recently proposed method for constructing prediction intervals for a response $Y$ given covariates $X$, without making distributional assumptions. However, as we demonstrate empirically, existing constructions of CQR can be ineffective for problems where the quantile regressors perform better in certain parts of the feature space than others. The reason is that the prediction intervals of CQR do not distinguish between two forms of uncertainty: first, the variability of the conditional distribution of $Y$ given $X$ (i.e., aleatoric uncertainty), and second, our uncertainty in estimating this conditional distribution (i.e., epistemic uncertainty). This can lead to uneven coverage, with intervals that are overly wide (or overly narrow) in regions where epistemic uncertainty is low (or high). To address this, we propose a new variant of the CQR methodology, Uncertainty-Aware CQR (UACQR), that explicitly separates these two sources of uncertainty to adjust quantile regressors differentially across the feature space. Compared to CQR, our methods enjoy the same distribution-free theoretical guarantees for coverage properties, while demonstrating in our experiments stronger conditional coverage in simulated settings and tighter intervals on a range of real-world data sets.
Abstract:Producing high-quality forecasts of key climate variables such as temperature and precipitation on subseasonal time scales has long been a gap in operational forecasting. Recent studies have shown promising results using machine learning (ML) models to advance subseasonal forecasting (SSF), but several open questions remain. First, several past approaches use the average of an ensemble of physics-based forecasts as an input feature of these models. However, ensemble forecasts contain information that can aid prediction beyond only the ensemble mean. Second, past methods have focused on average performance, whereas forecasts of extreme events are far more important for planning and mitigation purposes. Third, climate forecasts correspond to a spatially-varying collection of forecasts, and different methods account for spatial variability in the response differently. Trade-offs between different approaches may be mitigated with model stacking. This paper describes the application of a variety of ML methods used to predict monthly average precipitation and two meter temperature using physics-based predictions (ensemble forecasts) and observational data such as relative humidity, pressure at sea level, or geopotential height, two weeks in advance for the whole continental United States. Regression, quantile regression, and tercile classification tasks using linear models, random forests, convolutional neural networks, and stacked models are considered. The proposed models outperform common baselines such as historical averages (or quantiles) and ensemble averages (or quantiles). This paper further includes an investigation of feature importance, trade-offs between using the full ensemble or only the ensemble average, and different modes of accounting for spatial variability.