Conformalized Quantile Regression (CQR) is a recently proposed method for constructing prediction intervals for a response $Y$ given covariates $X$, without making distributional assumptions. However, as we demonstrate empirically, existing constructions of CQR can be ineffective for problems where the quantile regressors perform better in certain parts of the feature space than others. The reason is that the prediction intervals of CQR do not distinguish between two forms of uncertainty: first, the variability of the conditional distribution of $Y$ given $X$ (i.e., aleatoric uncertainty), and second, our uncertainty in estimating this conditional distribution (i.e., epistemic uncertainty). This can lead to uneven coverage, with intervals that are overly wide (or overly narrow) in regions where epistemic uncertainty is low (or high). To address this, we propose a new variant of the CQR methodology, Uncertainty-Aware CQR (UACQR), that explicitly separates these two sources of uncertainty to adjust quantile regressors differentially across the feature space. Compared to CQR, our methods enjoy the same distribution-free theoretical guarantees for coverage properties, while demonstrating in our experiments stronger conditional coverage in simulated settings and tighter intervals on a range of real-world data sets.