Abstract:In this paper, we present a novel approach for learning bimanual manipulation actions from human demonstration by extracting spatial constraints between affordance regions, termed affordance constraints, of the objects involved. Affordance regions are defined as object parts that provide interaction possibilities to an agent. For example, the bottom of a bottle affords the object to be placed on a surface, while its spout affords the contained liquid to be poured. We propose a novel approach to learn changes of affordance constraints in human demonstration to construct spatial bimanual action models representing object interactions. To exploit the information encoded in these spatial bimanual action models, we formulate an optimization problem to determine optimal object configurations across multiple execution keypoints while taking into account the initial scene, the learned affordance constraints, and the robot's kinematics. We evaluate the approach in simulation with two example tasks (pouring drinks and rolling dough) and compare three different definitions of affordance constraints: (i) component-wise distances between affordance regions in Cartesian space, (ii) component-wise distances between affordance regions in cylindrical space, and (iii) degrees of satisfaction of manually defined symbolic spatial affordance constraints.
Abstract:Humanoid robots will be able to assist humans in their daily life, in particular due to their versatile action capabilities. However, while these robots need a certain degree of autonomy to learn and explore, they also should respect various constraints, for access control and beyond. We explore the novel field of incorporating privacy, security, and access control constraints with robot task planning approaches. We report preliminary results on the classical symbolic approach, deep-learned neural networks, and modern ideas using large language models as knowledge base. From analyzing their trade-offs, we conclude that a hybrid approach is necessary, and thereby present a new use case for the emerging field of neuro-symbolic artificial intelligence.
Abstract:Natural-language dialog is key for intuitive human-robot interaction. It can be used not only to express humans' intents, but also to communicate instructions for improvement if a robot does not understand a command correctly. Of great importance is to endow robots with the ability to learn from such interaction experience in an incremental way to allow them to improve their behaviors or avoid mistakes in the future. In this paper, we propose a system to achieve incremental learning of complex behavior from natural interaction, and demonstrate its implementation on a humanoid robot. Building on recent advances, we present a system that deploys Large Language Models (LLMs) for high-level orchestration of the robot's behavior, based on the idea of enabling the LLM to generate Python statements in an interactive console to invoke both robot perception and action. The interaction loop is closed by feeding back human instructions, environment observations, and execution results to the LLM, thus informing the generation of the next statement. Specifically, we introduce incremental prompt learning, which enables the system to interactively learn from its mistakes. For that purpose, the LLM can call another LLM responsible for code-level improvements of the current interaction based on human feedback. The improved interaction is then saved in the robot's memory, and thus retrieved on similar requests. We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6 and evaluate our methods both quantitatively (in simulation) and qualitatively (in simulation and real-world) by demonstrating generalized incrementally-learned knowledge.
Abstract:Humans use semantic concepts such as spatial relations between objects to describe scenes and communicate tasks such as "Put the tea to the right of the cup" or "Move the plate between the fork and the spoon." Just as children, assistive robots must be able to learn the sub-symbolic meaning of such concepts from human demonstrations and instructions. We address the problem of incrementally learning geometric models of spatial relations from few demonstrations collected online during interaction with a human. Such models enable a robot to manipulate objects in order to fulfill desired spatial relations specified by verbal instructions. At the start, we assume the robot has no geometric model of spatial relations. Given a task as above, the robot requests the user to demonstrate the task once in order to create a model from a single demonstration, leveraging cylindrical probability distribution as generative representation of spatial relations. We show how this model can be updated incrementally with each new demonstration without access to past examples in a sample-efficient way using incremental maximum likelihood estimation, and demonstrate the approach on a real humanoid robot.