Abstract:In this paper, we present a novel approach for learning bimanual manipulation actions from human demonstration by extracting spatial constraints between affordance regions, termed affordance constraints, of the objects involved. Affordance regions are defined as object parts that provide interaction possibilities to an agent. For example, the bottom of a bottle affords the object to be placed on a surface, while its spout affords the contained liquid to be poured. We propose a novel approach to learn changes of affordance constraints in human demonstration to construct spatial bimanual action models representing object interactions. To exploit the information encoded in these spatial bimanual action models, we formulate an optimization problem to determine optimal object configurations across multiple execution keypoints while taking into account the initial scene, the learned affordance constraints, and the robot's kinematics. We evaluate the approach in simulation with two example tasks (pouring drinks and rolling dough) and compare three different definitions of affordance constraints: (i) component-wise distances between affordance regions in Cartesian space, (ii) component-wise distances between affordance regions in cylindrical space, and (iii) degrees of satisfaction of manually defined symbolic spatial affordance constraints.
Abstract:Learning task models of bimanual manipulation from human demonstration and their execution on a robot should take temporal constraints between actions into account. This includes constraints on (i) the symbolic level such as precedence relations or temporal overlap in the execution, and (ii) the subsymbolic level such as the duration of different actions, or their starting and end points in time. Such temporal constraints are crucial for temporal planning, reasoning, and the exact timing for the execution of bimanual actions on a bimanual robot. In our previous work, we addressed the learning of temporal task constraints on the symbolic level and demonstrated how a robot can leverage this knowledge to respond to failures during execution. In this work, we propose a novel model-driven approach for the combined learning of symbolic and subsymbolic temporal task constraints from multiple bimanual human demonstrations. Our main contributions are a subsymbolic foundation of a temporal task model that describes temporal nexuses of actions in the task based on distributions of temporal differences between semantic action keypoints, as well as a method based on fuzzy logic to derive symbolic temporal task constraints from this representation. This complements our previous work on learning comprehensive temporal task models by integrating symbolic and subsymbolic information based on a subsymbolic foundation, while still maintaining the symbolic expressiveness of our previous approach. We compare our proposed approach with our previous pure-symbolic approach and show that we can reproduce and even outperform it. Additionally, we show how the subsymbolic temporal task constraints can synchronize otherwise unimanual movement primitives for bimanual behavior on a humanoid robot.
Abstract:Movement primitives (MPs) are compact representations of robot skills that can be learned from demonstrations and combined into complex behaviors. However, merely equipping robots with a fixed set of innate MPs is insufficient to deploy them in dynamic and unpredictable environments. Instead, the full potential of MPs remains to be attained via adaptable, large-scale MP libraries. In this paper, we propose a set of seven fundamental operations to incrementally learn, improve, and re-organize MP libraries. To showcase their applicability, we provide explicit formulations of the spatial operations for libraries composed of Via-Point Movement Primitives (VMPs). By building on Riemannian manifold theory, our approach enables the incremental learning of all parameters of position and orientation VMPs within a library. Moreover, our approach stores a fixed number of parameters, thus complying with the essential principles of incremental learning. We evaluate our approach to incrementally learn a VMP library from motion capture data provided sequentially.