Abstract:Large Language Models (LLMs) have presented impressive performance across several transformative tasks. However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs, often riddled with numerous challenges such as frequent hardware failures, intricate parallelization strategies, and imbalanced resource utilization. In this paper, we present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme. Specifically, we investigate discrepancies between LLMs and prior task-specific Deep Learning (DL) workloads, explore resource utilization patterns, and identify the impact of various job failures. Our analysis summarizes hurdles we encountered and uncovers potential opportunities to optimize systems tailored for LLMs. Furthermore, we introduce our system efforts: (1) fault-tolerant pretraining, which enhances fault tolerance through LLM-involved failure diagnosis and automatic recovery. (2) decoupled scheduling for evaluation, which achieves timely performance feedback via trial decomposition and scheduling optimization.
Abstract:Effectively classifying remote sensing scenes is still a challenge due to the increasing spatial resolution of remote imaging and large variances between remote sensing images. Existing research has greatly improved the performance of remote sensing scene classification (RSSC). However, these methods are not applicable to cross-domain few-shot problems where target domain is with very limited training samples available and has a different data distribution from source domain. To improve the model's applicability, we propose the feature-wise transformation module (FTM) in this paper. FTM transfers the feature distribution learned on source domain to that of target domain by a very simple affine operation with negligible additional parameters. Moreover, FTM can be effectively learned on target domain in the case of few training data available and is agnostic to specific network structures. Experiments on RSSC and land-cover mapping tasks verified its capability to handle cross-domain few-shot problems. By comparison with directly finetuning, FTM achieves better performance and possesses better transferability and fine-grained discriminability. \textit{Code will be publicly available.}