Abstract:Keyframe extraction aims to sum up a video's semantics with the minimum number of its frames. This paper puts forward a Large Model based Sequential Keyframe Extraction for video summarization, dubbed LMSKE, which contains three stages as below. First, we use the large model "TransNetV21" to cut the video into consecutive shots, and employ the large model "CLIP2" to generate each frame's visual feature within each shot; Second, we develop an adaptive clustering algorithm to yield candidate keyframes for each shot, with each candidate keyframe locating nearest to a cluster center; Third, we further reduce the above candidate keyframes via redundancy elimination within each shot, and finally concatenate them in accordance with the sequence of shots as the final sequential keyframes. To evaluate LMSKE, we curate a benchmark dataset and conduct rich experiments, whose results exhibit that LMSKE performs much better than quite a few SOTA competitors with average F1 of 0.5311, average fidelity of 0.8141, and average compression ratio of 0.9922.
Abstract:Personalized news recommender systems help users quickly find content of their interests from the sea of information. Today, the mainstream technology for personalized news recommendation is based on deep neural networks that can accurately model the semantic match between news items and users' interests. In this paper, we present \textbf{PerCoNet}, a novel deep learning approach to personalized news recommendation which features two new findings: (i) representing users through \emph{explicit persona analysis} based on the prominent entities in their recent news reading history could be more effective than latent persona analysis employed by most existing work, with a side benefit of enhanced explainability; (ii) utilizing the title and abstract of each news item via cross-view \emph{contrastive learning} would work better than just combining them directly. Extensive experiments on two real-world news datasets clearly show the superior performance of our proposed approach in comparison with current state-of-the-art techniques.