Abstract:Keyframe extraction aims to sum up a video's semantics with the minimum number of its frames. This paper puts forward a Large Model based Sequential Keyframe Extraction for video summarization, dubbed LMSKE, which contains three stages as below. First, we use the large model "TransNetV21" to cut the video into consecutive shots, and employ the large model "CLIP2" to generate each frame's visual feature within each shot; Second, we develop an adaptive clustering algorithm to yield candidate keyframes for each shot, with each candidate keyframe locating nearest to a cluster center; Third, we further reduce the above candidate keyframes via redundancy elimination within each shot, and finally concatenate them in accordance with the sequence of shots as the final sequential keyframes. To evaluate LMSKE, we curate a benchmark dataset and conduct rich experiments, whose results exhibit that LMSKE performs much better than quite a few SOTA competitors with average F1 of 0.5311, average fidelity of 0.8141, and average compression ratio of 0.9922.