Abstract:In the current artificial intelligence (AI) era, the scale and quality of the dataset play a crucial role in training a high-quality AI model. However, often original data cannot be shared due to privacy concerns and regulations. A potential solution is to release a synthetic dataset with a similar distribution to the private dataset. Nevertheless, in some scenarios, the attributes required to train an AI model are distributed among different parties, and the parties cannot share the local data for synthetic data construction due to privacy regulations. In PETS 2024, we recently introduced the first Vertical Federated Learning-based Generative Adversarial Network (VFLGAN) for publishing vertically partitioned static data. However, VFLGAN cannot effectively handle time-series data, presenting both temporal and attribute dimensions. In this article, we proposed VFLGAN-TS, which combines the ideas of attribute discriminator and vertical federated learning to generate synthetic time-series data in the vertically partitioned scenario. The performance of VFLGAN-TS is close to that of its counterpart, which is trained in a centralized manner and represents the upper limit for VFLGAN-TS. To further protect privacy, we apply a Gaussian mechanism to make VFLGAN-TS satisfy an $(\epsilon,\delta)$-differential privacy. Besides, we develop an enhanced privacy auditing scheme to evaluate the potential privacy breach through the framework of VFLGAN-TS and synthetic datasets.
Abstract:In the current artificial intelligence (AI) era, the scale and quality of the dataset play a crucial role in training a high-quality AI model. However, good data is not a free lunch and is always hard to access due to privacy regulations like the General Data Protection Regulation (GDPR). A potential solution is to release a synthetic dataset with a similar distribution to that of the private dataset. Nevertheless, in some scenarios, it has been found that the attributes needed to train an AI model belong to different parties, and they cannot share the raw data for synthetic data publication due to privacy regulations. In PETS 2023, Xue et al. proposed the first generative adversary network-based model, VertiGAN, for vertically partitioned data publication. However, after thoroughly investigating, we found that VertiGAN is less effective in preserving the correlation among the attributes of different parties. This article proposes a Vertical Federated Learning-based Generative Adversarial Network, VFLGAN, for vertically partitioned data publication to address the above issues. Our experimental results show that compared with VertiGAN, VFLGAN significantly improves the quality of synthetic data. Taking the MNIST dataset as an example, the quality of the synthetic dataset generated by VFLGAN is 3.2 times better than that generated by VertiGAN w.r.t. the Fr\'echet Distance. We also designed a more efficient and effective Gaussian mechanism for the proposed VFLGAN to provide the synthetic dataset with a differential privacy guarantee. On the other hand, differential privacy only gives the upper bound of the worst-case privacy guarantee. This article also proposes a practical auditing scheme that applies membership inference attacks to estimate privacy leakage through the synthetic dataset.
Abstract:Accurate load forecasting is crucial for energy management, infrastructure planning, and demand-supply balancing. Smart meter data availability has led to the demand for sensor-based load forecasting. Conventional ML allows training a single global model using data from multiple smart meters requiring data transfer to a central server, raising concerns for network requirements, privacy, and security. We propose a split learning-based framework for load forecasting to alleviate this issue. We split a deep neural network model into two parts, one for each Grid Station (GS) responsible for an entire neighbourhood's smart meters and the other for the Service Provider (SP). Instead of sharing their data, client smart meters use their respective GSs' model split for forward pass and only share their activations with the GS. Under this framework, each GS is responsible for training a personalized model split for their respective neighbourhoods, whereas the SP can train a single global or personalized model for each GS. Experiments show that the proposed models match or exceed a centrally trained model's performance and generalize well. Privacy is analyzed by assessing information leakage between data and shared activations of the GS model split. Additionally, differential privacy enhances local data privacy while examining its impact on performance. A transformer model is used as our base learner.
Abstract:Underwater Acoustic Sensor Networks (UW-ASNs) are predominantly used for underwater environments and find applications in many areas. However, a lack of security considerations, the unstable and challenging nature of the underwater environment, and the resource-constrained nature of the sensor nodes used for UW-ASNs (which makes them incapable of adopting security primitives) make the UW-ASN prone to vulnerabilities. This paper proposes an Adaptive decentralised Intrusion Detection and Prevention System called AIDPS for UW-ASNs. The proposed AIDPS can improve the security of the UW-ASNs so that they can efficiently detect underwater-related attacks (e.g., blackhole, grayhole and flooding attacks). To determine the most effective configuration of the proposed construction, we conduct a number of experiments using several state-of-the-art machine learning algorithms (e.g., Adaptive Random Forest (ARF), light gradient-boosting machine, and K-nearest neighbours) and concept drift detection algorithms (e.g., ADWIN, kdqTree, and Page-Hinkley). Our experimental results show that incremental ARF using ADWIN provides optimal performance when implemented with One-class support vector machine (SVM) anomaly-based detectors. Furthermore, our extensive evaluation results also show that the proposed scheme outperforms state-of-the-art bench-marking methods while providing a wider range of desirable features such as scalability and complexity.
Abstract:Energy theft detection (ETD) and energy consumption forecasting (ECF) are two interconnected challenges in smart grid systems. Addressing these issues collectively is crucial for ensuring system security. This paper addresses the interconnected challenges of ETD and ECF in smart grid systems. The proposed solution combines long short-term memory (LSTM) and a denoising diffusion probabilistic model (DDPM) to generate input reconstruction and forecasting. By leveraging the reconstruction and forecasting errors, the system identifies instances of energy theft, with the methods based on reconstruction error and forecasting error complementing each other in detecting different types of attacks. Through extensive experiments on real-world and synthetic datasets, the proposed scheme outperforms baseline methods in ETD and ECF problems. The ensemble method significantly enhances ETD performance, accurately detecting energy theft attacks that baseline methods fail to detect. The research offers a comprehensive and effective solution for addressing ETD and ECF challenges, demonstrating promising results and improved security in smart grid systems.
Abstract:The offshore wind energy is increasingly becoming an attractive source of energy due to having lower environmental impact. Effective operation and maintenance that ensures the maximum availability of the energy generation process using offshore facilities and minimal production cost are two key factors to improve the competitiveness of this energy source over other traditional sources of energy. Condition monitoring systems are widely used for health management of offshore wind farms to have improved operation and maintenance. Reliability of the wind farms are increasingly being evaluated to aid in the maintenance process and thereby to improve the availability of the farms. However, much of the reliability analysis is performed offline based on statistical data. In this article, we propose a drone-assisted monitoring based method for online reliability evaluation of wind turbines. A blade system of a wind turbine is used as an illustrative example to demonstrate the proposed approach.
Abstract:As the demand for highly secure and dependable lightweight systems increases in the modern world, Physically Unclonable Functions (PUFs) continue to promise a lightweight alternative to high-cost encryption techniques and secure key storage. While the security features promised by PUFs are highly attractive for secure system designers, they have been shown to be vulnerable to various sophisticated attacks - most notably Machine Learning (ML) based modelling attacks (ML-MA) which attempt to digitally clone the PUF behaviour and thus undermine their security. More recent ML-MA have even exploited publicly known helper data required for PUF error correction in order to predict PUF responses without requiring knowledge of response data. In response to this, research is beginning to emerge regarding the authentication of PUF devices with the assistance of ML as opposed to traditional PUF techniques of storage and comparison of pre-known Challenge-Response pairs (CRPs). In this article, we propose a classification system using ML based on a novel `PUF-Phenotype' concept to accurately identify the origin and determine the validity of noisy memory derived (DRAM) PUF responses as an alternative to helper data-reliant denoising techniques. To our best knowledge, we are the first to perform classification over multiple devices per model to enable a group-based PUF authentication scheme. We achieve up to 98\% classification accuracy using a modified deep convolutional neural network (CNN) for feature extraction in conjunction with several well-established classifiers. We also experimentally verified the performance of our model on a Raspberry Pi device to determine the suitability of deploying our proposed model in a resource-constrained environment.