Abstract:Sherds, as the most common artifacts uncovered during archaeological excavations, carry rich information about past human societies so need to be accurately reconstructed and recorded digitally for analysis and preservation. Often hundreds of fragments are uncovered in a day at an archaeological excavation site, far beyond the scanning capacity of existing imaging systems. Hence, there is high demand for a desirable image acquisition system capable of imaging hundreds of fragments per day. In response to this demand, we developed a new system, dubbed FIRES, for Fast Imaging and 3D REconstruction of Sherds. The FIRES system consists of two main components. The first is an optimally designed fast image acquisition device capable of capturing over 700 sherds per day (in 8 working hours) in actual tests at an excavation site, which is one order-of-magnitude faster than existing systems. The second component is an automatic pipeline for 3D reconstruction of the sherds from the images captured by the imaging acquisition system, achieving reconstruction accuracy of 0.16 milimeters. The pipeline includes a novel batch matching algorithm that matches partial 3D scans of the front and back sides of the sherds and a new ICP-type method that registers the front and back sides sharing very narrow overlapping regions. Extensive validation in labs and testing in excavation sites demonstrated that our FIRES system provides the first fast, accurate, portal, and cost-effective solution for the task of imaging and 3D reconstruction of sherds in archaeological excavations.