Abstract:Magnetic Resonance Imaging (MRI) requires a trade-off between resolution, signal-to-noise ratio, and scan time, making high-resolution (HR) acquisition challenging. Therefore, super-resolution for MR image is a feasible solution. However, most existing methods face challenges in accurately learning a continuous volumetric representation from low-resolution image or require HR image for supervision. To solve these challenges, we propose a novel method for MR image super-resolution based on two-factor representation. Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors, enabling efficient continuous volumetric representation from low-resolution MR image. Besides, we introduce a coordinate-based encoding to capture structural relationships between sparse voxels, facilitating smooth completion in unobserved regions. Experiments on BraTS 2019 and MSSEG 2016 datasets demonstrate that our method achieves state-of-the-art performance, providing superior visual fidelity and robustness, particularly in large up-sampling scale MR image super-resolution.
Abstract:Motion prediction is a classic problem in computer vision, which aims at forecasting future motion given the observed pose sequence. Various deep learning models have been proposed, achieving state-of-the-art performance on motion prediction. However, existing methods typically focus on modeling temporal dynamics in the pose space. Unfortunately, the complicated and high dimensionality nature of human motion brings inherent challenges for dynamic context capturing. Therefore, we move away from the conventional pose based representation and present a novel approach employing a phase space trajectory representation of individual joints. Moreover, current methods tend to only consider the dependencies between physically connected joints. In this paper, we introduce a novel convolutional neural model to effectively leverage explicit prior knowledge of motion anatomy, and simultaneously capture both spatial and temporal information of joint trajectory dynamics. We then propose a global optimization module that learns the implicit relationships between individual joint features. Empirically, our method is evaluated on large-scale 3D human motion benchmark datasets (i.e., Human3.6M, CMU MoCap). These results demonstrate that our method sets the new state-of-the-art on the benchmark datasets. Our code will be available at https://github.com/Pose-Group/TEID.