Abstract:Magnetic Resonance Imaging (MRI) requires a trade-off between resolution, signal-to-noise ratio, and scan time, making high-resolution (HR) acquisition challenging. Therefore, super-resolution for MR image is a feasible solution. However, most existing methods face challenges in accurately learning a continuous volumetric representation from low-resolution image or require HR image for supervision. To solve these challenges, we propose a novel method for MR image super-resolution based on two-factor representation. Specifically, we factorize intensity signals into a linear combination of learnable basis and coefficient factors, enabling efficient continuous volumetric representation from low-resolution MR image. Besides, we introduce a coordinate-based encoding to capture structural relationships between sparse voxels, facilitating smooth completion in unobserved regions. Experiments on BraTS 2019 and MSSEG 2016 datasets demonstrate that our method achieves state-of-the-art performance, providing superior visual fidelity and robustness, particularly in large up-sampling scale MR image super-resolution.
Abstract:We introduce a high-fidelity neural implicit dense visual Simultaneous Localization and Mapping (SLAM) system, termed DF-SLAM. In our work, we employ dictionary factors for scene representation, encoding the geometry and appearance information of the scene as a combination of basis and coefficient factors. Compared to neural implicit SLAM methods that directly encode scene information as features, our method exhibits superior scene detail reconstruction capabilities and more efficient memory usage, while our model size is insensitive to the size of the scene map, making our method more suitable for large-scale scenes. Additionally, we employ feature integration rendering to accelerate color rendering speed while ensuring color rendering quality, further enhancing the real-time performance of our neural SLAM method. Extensive experiments on synthetic and real-world datasets demonstrate that our method is competitive with existing state-of-the-art neural implicit SLAM methods in terms of real-time performance, localization accuracy, and scene reconstruction quality. Our source code is available at https://github.com/funcdecl/DF-SLAM.