Abstract:As the realm of spectral imaging applications extends its reach into the domains of mobile technology and augmented reality, the demands for compact yet high-fidelity systems become increasingly pronounced. Conventional methodologies, exemplified by coded aperture snapshot spectral imaging systems, are significantly limited by their cumbersome physical dimensions and form factors. To address this inherent challenge, diffractive optical elements (DOEs) have been repeatedly employed as a means to mitigate issues related to the bulky nature of these systems. Nonetheless, it's essential to note that the capabilities of DOEs primarily revolve around the modulation of the phase of light. Here, we introduce an end-to-end computational spectral imaging framework based on a polarization-multiplexed metalens. A distinguishing feature of this approach lies in its capacity to simultaneously modulate orthogonal polarization channels. When harnessed in conjunction with a neural network, it facilitates the attainment of high-fidelity spectral reconstruction. Importantly, the framework is intrinsically fully differentiable, a feature that permits the joint optimization of both the metalens structure and the parameters governing the neural network. The experimental results presented herein validate the exceptional spatial-spectral reconstruction performance, underscoring the efficacy of this system in practical, real-world scenarios. This innovative approach transcends the traditional boundaries separating hardware and software in the realm of computational imaging and holds the promise of substantially propelling the miniaturization of spectral imaging systems.
Abstract:Compared with conventional grating-based spectrometers, reconstructive spectrometers based on spectrally engineered filtering have the advantage of miniaturization because of the less demand for dispersive optics and free propagation space. However, available reconstructive spectrometers fail to balance the performance on operational bandwidth, spectral diversity and angular stability. In this work, we proposed a compact silicon metasurfaces based spectrometer/camera. After angle integration, the spectral response of the system is robust to angle/aperture within a wide working bandwidth from 400nm to 800nm. It is experimentally demonstrated that the proposed method could maintain the spectral consistency from F/1.8 to F/4 (The corresponding angle of incident light ranges from 7{\deg} to 16{\deg}) and the incident hyperspectral signal could be accurately reconstructed with a fidelity exceeding 99%. Additionally, a spectral imaging system with 400x400 pixels is also established in this work. The accurate reconstructed hyperspectral image indicates that the proposed aperture-robust spectrometer has the potential to be extended as a high-resolution broadband hyperspectral camera.