Abstract:In this paper the task of emotion recognition from speech is considered. Proposed approach uses deep recurrent neural network trained on a sequence of acoustic features calculated over small speech intervals. At the same time special probabilistic-nature CTC loss function allows to consider long utterances containing both emotional and neutral parts. The effectiveness of such an approach is shown in two ways. Firstly, the comparison with recent advances in this field is carried out. Secondly, human performance on the same task is measured. Both criteria show the high quality of the proposed method.
Abstract:We describe GTApprox - a new tool for medium-scale surrogate modeling in industrial design. Compared to existing software, GTApprox brings several innovations: a few novel approximation algorithms, several advanced methods of automated model selection, novel options in the form of hints. We demonstrate the efficiency of GTApprox on a large collection of test problems. In addition, we describe several applications of GTApprox to real engineering problems.