WEB3
Abstract:DOREMUS works on a better description of music by building new tools to link and explore the data of three French institutions. This paper gives an overview of the data model based on FRBRoo, explains the conversion and linking processes using linked data technologies and presents the prototypes created to consume the data according to the web users' needs.
Abstract:Topic models are statistical methods that extract underlying topics from document collections. When performing topic modeling, a user usually desires topics that are coherent, diverse between each other, and that constitute good document representations for downstream tasks (e.g. document classification). In this paper, we conduct a multi-objective hyperparameter optimization of three well-known topic models. The obtained results reveal the conflicting nature of different objectives and that the training corpus characteristics are crucial for the hyperparameter selection, suggesting that it is possible to transfer the optimal hyperparameter configurations between datasets.
Abstract:This paper describes the approach proposed by the D2KLab team for the 2020 RecSys Challenge on the task of predicting user engagement facing tweets. This approach relies on two distinct stages. First, relevant features are learned from the challenge dataset. These features are heterogeneous and are the results of different learning modules such as handcrafted features, knowledge graph embeddings, sentiment analysis features and BERT word embeddings. Second, these features are provided in input to an ensemble system based on XGBoost. This approach, only trained on a subset of the entire challenge dataset, ranked 22 in the final leaderboard.