Abstract:Combustion vehicle emissions contribute to poor air quality and release greenhouse gases into the atmosphere, and vehicle pollution has been associated with numerous adverse health effects. Roadways with extensive waiting and/or passenger drop off, such as schools and hospital drop-off zones, can result in high incidence and density of idling vehicles. This can produce micro-climates of increased vehicle pollution. Thus, the detection of idling vehicles can be helpful in monitoring and responding to unnecessary idling and be integrated into real-time or off-line systems to address the resulting pollution. In this paper we present a real-time, dynamic vehicle idling detection algorithm. The proposed idle detection algorithm and notification rely on an algorithm to detect these idling vehicles. The proposed method relies on a multi-sensor, audio-visual, machine-learning workflow to detect idling vehicles visually under three conditions: moving, static with the engine on, and static with the engine off. The visual vehicle motion detector is built in the first stage, and then a contrastive-learning-based latent space is trained for classifying static vehicle engine sound. We test our system in real-time at a hospital drop-off point in Salt Lake City. This in-situ dataset was collected and annotated, and it includes vehicles of varying models and types. The experiments show that the method can detect engine switching on or off instantly and achieves 71.01 mean average precision (mAP).
Abstract:The objective of human parsing is to partition a human in an image into constituent parts. This task involves labeling each pixel of the human image according to the classes. Since the human body comprises hierarchically structured parts, each body part of an image can have its sole position distribution characteristics. Probably, a human head is less likely to be under the feet, and arms are more likely to be near the torso. Inspired by this observation, we make instance class distributions by accumulating the original human parsing label in the horizontal and vertical directions, which can be utilized as supervision signals. Using these horizontal and vertical class distribution labels, the network is guided to exploit the intrinsic position distribution of each class. We combine two guided features to form a spatial guidance map, which is then superimposed onto the baseline network by multiplication and concatenation to distinguish the human parts precisely. We conducted extensive experiments to demonstrate the effectiveness and superiority of our method on three well-known benchmarks: LIP, ATR, and CIHP databases.
Abstract:A novel algorithm for uncalibrated stereo image-pair rectification under the constraint of geometric distortion, called USR-CGD, is presented in this work. Although it is straightforward to define a rectifying transformation (or homography) given the epipolar geometry, many existing algorithms have unwanted geometric distortions as a side effect. To obtain rectified images with reduced geometric distortions while maintaining a small rectification error, we parameterize the homography by considering the influence of various kinds of geometric distortions. Next, we define several geometric measures and incorporate them into a new cost function for parameter optimization. Finally, we propose a constrained adaptive optimization scheme to allow a balanced performance between the rectification error and the geometric error. Extensive experimental results are provided to demonstrate the superb performance of the proposed USR-CGD method, which outperforms existing algorithms by a significant margin.