Abstract:Speech language models align with human brain responses to natural language to an impressive degree. However, current models rely heavily on low-level speech features, indicating they lack brain-relevant semantics which limits their utility as model organisms of semantic processing in the brain. In this work, we address this limitation by inducing brain-relevant bias directly into the models via fine-tuning with fMRI recordings of people listening to natural stories, a process we name brain-tuning. After testing it on 3 different pretrained model families, we show that brain-tuning not only improves overall alignment with new brain recordings in semantic language regions, but also reduces the reliance on low-level speech features for this alignment. Excitingly, we further show that brain-tuning leads to 1) consistent improvements in performance on a range of downstream tasks and 2) a representational space with increased semantic preference. Our results provide converging evidence, for the first time, that incorporating brain signals into the training of language models improves the models' semantic understanding.
Abstract:One of the major challenges in training deep neural networks for text-to-image generation is the significant linguistic discrepancy between ground-truth captions of each image in most popular datasets. The large difference in the choice of words in such captions results in synthesizing images that are semantically dissimilar to each other and to their ground-truth counterparts. Moreover, existing models either fail to generate the fine-grained details of the image or require a huge number of parameters that renders them inefficient for text-to-image synthesis. To fill this gap in the literature, we propose using the contrastive learning approach with a novel combination of two loss functions: fake-to-fake loss to increase the semantic consistency between generated images of the same caption, and fake-to-real loss to reduce the gap between the distributions of real images and fake ones. We test this approach on two baseline models: SSAGAN and AttnGAN (with style blocks to enhance the fine-grained details of the images.) Results show that our approach improves the qualitative results on AttnGAN with style blocks on the CUB dataset. Additionally, on the challenging COCO dataset, our approach achieves competitive results against the state-of-the-art Lafite model, outperforms the FID score of SSAGAN model by 44.