Abstract:Extending the maneuverability of unmanned areal vehicles promises to yield a considerable increase in the areas in which these systems can be used. Some such applications are the performance of more complicated inspection tasks and the generation of complex uninterrupted movements of an attached camera. In this paper we address this challenge by presenting Voliro, a novel aerial platform that combines the advantages of existing multi-rotor systems with the agility of omnidirectionally controllable platforms. We propose the use of a hexacopter with tiltable rotors allowing the system to decouple the control of position and orientation. The contributions of this work involve the mechanical design as well as a controller with the corresponding allocation scheme. This work also discusses the design challenges involved when turning the concept of a hexacopter with tiltable rotors into an actual prototype. The agility of the system is demonstrated and evaluated in real- world experiments.
Abstract:The paper introduces the notion of off-line justification for Answer Set Programming (ASP). Justifications provide a graph-based explanation of the truth value of an atom w.r.t. a given answer set. The paper extends also this notion to provide justification of atoms during the computation of an answer set (on-line justification), and presents an integration of on-line justifications within the computation model of Smodels. Off-line and on-line justifications provide useful tools to enhance understanding of ASP, and they offer a basic data structure to support methodologies and tools for debugging answer set programs. A preliminary implementation has been developed in ASP-PROLOG. (To appear in Theory and Practice of Logic Programming (TPLP))