Abstract:Driven by the filtering challenges in linear systems disturbed by non-Gaussian heavy-tailed noise, the robust Kalman filters (RKFs) leveraging diverse heavy-tailed distributions have been introduced. However, the RKFs rely on precise noise models, and large model errors can degrade their filtering performance. Also, the posterior approximation by the employed variational Bayesian (VB) method can further decrease the estimation precision. Here, we introduce an innovative RKF method, the RKFNet, which combines the heavy-tailed-distribution-based RKF framework with the deep learning (DL) technique and eliminates the need for the precise parameters of the heavy-tailed distributions. To reduce the VB approximation error, the mixing-parameter-based function and the scale matrix are estimated by the incorporated neural network structures. Also, the stable training process is achieved by our proposed unsupervised scheduled sampling (USS) method, where a loss function based on the Student's t (ST) distribution is utilised to overcome the disturbance of the noise outliers and the filtering results of the traditional RKFs are employed as reference sequences. Furthermore, the RKFNet is evaluated against various RKFs and recurrent neural networks (RNNs) under three kinds of heavy-tailed measurement noises, and the simulation results showcase its efficacy in terms of estimation accuracy and efficiency.
Abstract:The advancement of knowledge distillation has played a crucial role in enabling the transfer of knowledge from larger teacher models to smaller and more efficient student models, and is particularly beneficial for online and resource-constrained applications. The effectiveness of the student model heavily relies on the quality of the distilled knowledge received from the teacher. Given the accessibility of unlabelled remote sensing data, semi-supervised learning has become a prevalent strategy for enhancing model performance. However, relying solely on semi-supervised learning with smaller models may be insufficient due to their limited capacity for feature extraction. This limitation restricts their ability to exploit training data. To address this issue, we propose an integrated approach that combines knowledge distillation and semi-supervised learning methods. This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data whilst subsequently providing the small student model with rich and informative features for enhancement. The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model, in the application of road segmentation, surpassing the effectiveness of traditional semi-supervised learning methods.
Abstract:Semi-supervised learning is designed to help reduce the cost of the manual labelling process by exploiting the use of useful features from a large quantity of unlabelled data during training. Since pixel-level manual labelling in large-scale remote sensing imagery is expensive, semi-supervised learning becomes an appropriate solution to this. However, most of the existing semi-supervised learning methods still lack efficient perturbation methods to promote diversity of features and the precision of pseudo labels during training. In order to fill this gap, we propose DiverseNet architectures which explore multi-head and multi-model semi-supervised learning algorithms by simultaneously promoting precision and diversity during training. The two proposed methods of DiverseNet, namely the DiverseHead and DiverseModel, achieve the highest semantic segmentation performance in four widely utilised remote sensing imagery data sets compared to state-of-the-art semi-supervised learning methods. Meanwhile, the proposed DiverseHead architecture is relatively lightweight in terms of parameter space compared to the state-of-the-art methods whilst reaching high-performance results for all the tested data sets.
Abstract:Semi-supervised learning has been well developed to help reduce the cost of manual labelling by exploiting a large quantity of unlabelled data. Especially in the application of land cover classification, pixel-level manual labelling in large-scale imagery is labour-intensive and expensive. However, the existing semi-supervised learning methods pay limited attention to the quality of pseudo-labels whilst supervising the network. That is, nevertheless, one of the critical factors determining network performance. In order to fill this gap, we develop a confidence-guided semi-supervised learning (CGSSL) approach to make use of high-confidence pseudo labels and reduce the negative effect of low-confidence ones on training the land cover classification network. Meanwhile, the proposed semi-supervised learning approach uses multiple network architectures to increase pseudo-label diversity. The proposed semi-supervised learning approach significantly improves the performance of land cover classification compared to the classical semi-supervised learning methods in computer vision and even outperforms fully supervised learning with a complete set of labelled imagery of the benchmark Potsdam land cover data set.
Abstract:Combining multi-spectral satellite data and machine learning has been suggested as a method for monitoring plastic pollutants in the ocean environment. Recent studies have made theoretical progress regarding the identification of marine plastic via machine learning. However, no study has assessed the application of these methods for mapping and monitoring marine-plastic density. As such, this paper comprised of three main components: (1) the development of a machine learning model, (2) the construction of the MAP-Mapper, an automated tool for mapping marine-plastic density, and finally (3) an evaluation of the whole system for out-of-distribution test locations. The findings from this paper leverage the fact that machine learning models need to be high-precision to reduce the impact of false positives on results. The developed MAP-Mapper architectures provide users choices to reach high-precision ($\textit{abbv.}$ -HP) or optimum precision-recall ($\textit{abbv.}$ -Opt) values in terms of the training/test data set. Our MAP-Mapper-HP model greatly increased the precision of plastic detection to 95\%, whilst MAP-Mapper-Opt reaches precision-recall pair of 87\%-88\%. The MAP-Mapper contributes to the literature with the first tool to exploit advanced deep/machine learning and multi-spectral imagery to map marine-plastic density in automated software. The proposed data pipeline has taken a novel approach to map plastic density in ocean regions. As such, this enables an initial assessment of the challenges and opportunities of this method to help guide future work and scientific study.
Abstract:Efficiently using the space of an elevator for a service robot is very necessary, due to the need for reducing the amount of time caused by waiting for the next elevator. To solve this, we propose a hybrid approach that combines reinforcement learning (RL) with voice interaction for robot navigation in the scene of entering the elevator. RL provides robots with a high exploration ability to find a new clear path to enter the elevator compared to the traditional navigation methods such as Optimal Reciprocal Collision Avoidance (ORCA). The proposed method allows the robot to take an active clear path action towards the elevator whilst a crowd of people stands at the entrance of the elevator wherein there are still lots of space. This is done by embedding a clear path action (beep) into the RL framework, and the proposed navigation policy leads the robot to finish tasks efficiently and safely. Our model approach provides a great improvement in the success rate and reward of entering the elevator compared to state-of-the-art ORCA and RL navigation policy without beep.