Abstract:This study investigates the dynamics of extreme opinions on social media during the 2023 Israeli-Palestinian conflict, utilising a comprehensive dataset of over 450,000 posts from four Reddit subreddits (r/Palestine, r/Judaism, r/IsraelPalestine, and r/worldnews). A lexicon-based, unsupervised methodology was developed to measure "extreme opinions" by considering factors such as anger, polarity, and subjectivity. The analysis identifies significant peaks in extremism scores that correspond to pivotal real-life events, such as the IDF's bombings of Al Quds Hospital and the Jabalia Refugee Camp, and the end of a ceasefire following a terrorist attack. Additionally, this study explores the distribution and correlation of these scores across different subreddits and over time, providing insights into the propagation of polarised sentiments in response to conflict events. By examining the quantitative effects of each score on extremism and analysing word cloud similarities through Jaccard indices, the research offers a nuanced understanding of the factors driving extreme online opinions. This approach underscores the potential of social media analytics in capturing the complex interplay between real-world events and online discourse, while also highlighting the limitations and challenges of measuring extremism in social media contexts.
Abstract:This paper proposes a novel lexicon-based unsupervised sentimental analysis method to measure the $``\textit{hope}"$ and $``\textit{fear}"$ for the 2022 Ukrainian-Russian Conflict. $\textit{Reddit.com}$ is utilised as the main source of human reactions to daily events during nearly the first three months of the conflict. The top 50 $``hot"$ posts of six different subreddits about Ukraine and news (Ukraine, worldnews, Ukraina, UkrainianConflict, UkraineWarVideoReport, UkraineWarReports) and their relative comments are scraped and a data set is created. On this corpus, multiple analyses such as (1) public interest, (2) hope/fear score, (3) stock price interaction are employed. We promote using a dictionary approach, which scores the hopefulness of every submitted user post. The Latent Dirichlet Allocation (LDA) algorithm of topic modelling is also utilised to understand the main issues raised by users and what are the key talking points. Experimental analysis shows that the hope strongly decreases after the symbolic and strategic losses of Azovstal (Mariupol) and Severodonetsk. Spikes in hope/fear, both positives and negatives, are present after important battles, but also some non-military events, such as Eurovision and football games.