Abstract:Nearly 6.7 million lives are lost due to air pollution every year. While policymakers are working on the mitigation strategies, public awareness can help reduce the exposure to air pollution. Air pollution data from government-installed sensors is often publicly available in raw format, but there is a non-trivial barrier for various stakeholders in deriving meaningful insights from that data. In this work, we present VayuBuddy, a Large Language Model (LLM)-powered chatbot system to reduce the barrier between the stakeholders and air quality sensor data. VayuBuddy receives the questions in natural language, analyses the structured sensory data with a LLM-generated Python code and provides answers in natural language. We use the data from Indian government air quality sensors. We benchmark the capabilities of 7 LLMs on 45 diverse question-answer pairs prepared by us. Additionally, VayuBuddy can also generate visual analysis such as line-plots, map plot, bar charts and many others from the sensory data as we demonstrate in this work.
Abstract:Respiratory illnesses are a significant global health burden. Respiratory illnesses, primarily Chronic obstructive pulmonary disease (COPD), is the seventh leading cause of poor health worldwide and the third leading cause of death worldwide, causing 3.23 million deaths in 2019, necessitating early identification and diagnosis for effective mitigation. Among the diagnostic tools employed, spirometry plays a crucial role in detecting respiratory abnormalities. However, conventional clinical spirometry methods often entail considerable costs and practical limitations like the need for specialized equipment, trained personnel, and a dedicated clinical setting, making them less accessible. To address these challenges, wearable spirometry technologies have emerged as promising alternatives, offering accurate, cost-effective, and convenient solutions. The development of machine learning models for wearable spirometry heavily relies on the availability of high-quality ground truth spirometry data, which is a laborious and expensive endeavor. In this research, we propose using active learning, a sub-field of machine learning, to mitigate the challenges associated with data collection and labeling. By strategically selecting samples from the ground truth spirometer, we can mitigate the need for resource-intensive data collection. We present evidence that models trained on small subsets obtained through active learning achieve comparable/better results than models trained on the complete dataset.
Abstract:Robotic manipulation is essential for the widespread adoption of robots in industrial and home settings and has long been a focus within the robotics community. Advances in artificial intelligence have introduced promising learning-based methods to address this challenge, with imitation learning emerging as particularly effective. However, efficiently acquiring high-quality demonstrations remains a challenge. In this work, we introduce an immersive VR-based teleoperation setup designed to collect demonstrations from a remote human user. We also propose an imitation learning framework called Haptic Action Chunking with Transformers (Haptic-ACT). To evaluate the platform, we conducted a pick-and-place task and collected 50 demonstration episodes. Results indicate that the immersive VR platform significantly reduces demonstrator fingertip forces compared to systems without haptic feedback, enabling more delicate manipulation. Additionally, evaluations of the Haptic-ACT framework in both the MuJoCo simulator and on a real robot demonstrate its effectiveness in teaching robots more compliant manipulation compared to the original ACT. Additional materials are available at https://sites.google.com/view/hapticact.