Abstract:Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage. Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data, which can be challenging and costly to collect in real-world settings. We hypothesize that appliance data from all households does not uniformly contribute to NILM model improvements. Thus, we propose an active learning approach to selectively install appliance monitors in a limited number of houses. This work is the first to benchmark the use of active learning for strategically selecting appliance-level data to optimize NILM performance. We first develop uncertainty-aware neural networks for NILM and then install sensors in homes where disaggregation uncertainty is highest. Benchmarking our method on the publicly available Pecan Street Dataport dataset, we demonstrate that our approach significantly outperforms a standard random baseline and achieves performance comparable to models trained on the entire dataset. Using this approach, we achieve comparable NILM accuracy with approximately 30% of the data, and for a fixed number of sensors, we observe up to a 2x reduction in disaggregation errors compared to random sampling.
Abstract:Respiratory illnesses are a significant global health burden. Respiratory illnesses, primarily Chronic obstructive pulmonary disease (COPD), is the seventh leading cause of poor health worldwide and the third leading cause of death worldwide, causing 3.23 million deaths in 2019, necessitating early identification and diagnosis for effective mitigation. Among the diagnostic tools employed, spirometry plays a crucial role in detecting respiratory abnormalities. However, conventional clinical spirometry methods often entail considerable costs and practical limitations like the need for specialized equipment, trained personnel, and a dedicated clinical setting, making them less accessible. To address these challenges, wearable spirometry technologies have emerged as promising alternatives, offering accurate, cost-effective, and convenient solutions. The development of machine learning models for wearable spirometry heavily relies on the availability of high-quality ground truth spirometry data, which is a laborious and expensive endeavor. In this research, we propose using active learning, a sub-field of machine learning, to mitigate the challenges associated with data collection and labeling. By strategically selecting samples from the ground truth spirometer, we can mitigate the need for resource-intensive data collection. We present evidence that models trained on small subsets obtained through active learning achieve comparable/better results than models trained on the complete dataset.