Abstract:Air pollution kills 7 million people annually. The brick kiln sector significantly contributes to economic development but also accounts for 8-14\% of air pollution in India. Policymakers have implemented compliance measures to regulate brick kilns. Emission inventories are critical for air quality modeling and source apportionment studies. However, the largely unorganized nature of the brick kiln sector necessitates labor-intensive survey efforts for monitoring. Recent efforts by air quality researchers have relied on manual annotation of brick kilns using satellite imagery to build emission inventories, but this approach lacks scalability. Machine-learning-based object detection methods have shown promise for detecting brick kilns; however, previous studies often rely on costly high-resolution imagery and fail to integrate with governmental policies. In this work, we developed a scalable machine-learning pipeline that detected and classified 30638 brick kilns across five states in the Indo-Gangetic Plain using free, moderate-resolution satellite imagery from Planet Labs. Our detections have a high correlation with on-ground surveys. We performed automated compliance analysis based on government policies. In the Delhi airshed, stricter policy enforcement has led to the adoption of efficient brick kiln technologies. This study highlights the need for inclusive policies that balance environmental sustainability with the livelihoods of workers.
Abstract:Nearly 6.7 million lives are lost due to air pollution every year. While policymakers are working on the mitigation strategies, public awareness can help reduce the exposure to air pollution. Air pollution data from government-installed sensors is often publicly available in raw format, but there is a non-trivial barrier for various stakeholders in deriving meaningful insights from that data. In this work, we present VayuBuddy, a Large Language Model (LLM)-powered chatbot system to reduce the barrier between the stakeholders and air quality sensor data. VayuBuddy receives the questions in natural language, analyses the structured sensory data with a LLM-generated Python code and provides answers in natural language. We use the data from Indian government air quality sensors. We benchmark the capabilities of 7 LLMs on 45 diverse question-answer pairs prepared by us. Additionally, VayuBuddy can also generate visual analysis such as line-plots, map plot, bar charts and many others from the sensory data as we demonstrate in this work.