Abstract:Air pollution kills 7 million people annually. The brick kiln sector significantly contributes to economic development but also accounts for 8-14\% of air pollution in India. Policymakers have implemented compliance measures to regulate brick kilns. Emission inventories are critical for air quality modeling and source apportionment studies. However, the largely unorganized nature of the brick kiln sector necessitates labor-intensive survey efforts for monitoring. Recent efforts by air quality researchers have relied on manual annotation of brick kilns using satellite imagery to build emission inventories, but this approach lacks scalability. Machine-learning-based object detection methods have shown promise for detecting brick kilns; however, previous studies often rely on costly high-resolution imagery and fail to integrate with governmental policies. In this work, we developed a scalable machine-learning pipeline that detected and classified 30638 brick kilns across five states in the Indo-Gangetic Plain using free, moderate-resolution satellite imagery from Planet Labs. Our detections have a high correlation with on-ground surveys. We performed automated compliance analysis based on government policies. In the Delhi airshed, stricter policy enforcement has led to the adoption of efficient brick kiln technologies. This study highlights the need for inclusive policies that balance environmental sustainability with the livelihoods of workers.
Abstract:Air pollution kills 7 million people annually. The brick manufacturing industry accounts for 8%-14% of air pollution in the densely populated Indo-Gangetic plain. Due to the unorganized nature of brick kilns, policy violation detection, such as proximity to human habitats, remains challenging. While previous studies have utilized computer vision-based machine learning methods for brick kiln detection from satellite imagery, they utilize proprietary satellite data and rarely focus on compliance with government policies. In this research, we introduce a scalable framework for brick kiln detection and automatic compliance monitoring. We use Google Maps Static API to download the satellite imagery followed by the YOLOv8x model for detection. We identified and hand-verified 19579 new brick kilns across 9 states within the Indo-Gangetic plain. Furthermore, we automate and test the compliance to the policies affecting human habitats, rivers and hospitals. Our results show that a substantial number of brick kilns do not meet the compliance requirements. Our framework offers a valuable tool for governments worldwide to automate and enforce policy regulations for brick kilns, addressing critical environmental and public health concerns.