Abstract:Retrieval-Augmented Generation (RAG) has recently emerged as a promising solution to alleviate Large Language Model (LLM)'s deficiency in lack of knowledge. Existing RAG datasets, however, do not adequately represent the diverse and dynamic nature of real-world Question Answering (QA) tasks. To bridge this gap, we introduce the Comprehensive RAG Benchmark (CRAG), a factual question answering benchmark of 4,409 question-answer pairs and mock APIs to simulate web and Knowledge Graph (KG) search. CRAG is designed to encapsulate a diverse array of questions across five domains and eight question categories, reflecting varied entity popularity from popular to long-tail, and temporal dynamisms ranging from years to seconds. Our evaluation on this benchmark highlights the gap to fully trustworthy QA. Whereas most advanced LLMs achieve <=34% accuracy on CRAG, adding RAG in a straightforward manner improves the accuracy only to 44%. State-of-the-art industry RAG solutions only answer 63% questions without any hallucination. CRAG also reveals much lower accuracy in answering questions regarding facts with higher dynamism, lower popularity, or higher complexity, suggesting future research directions. The CRAG benchmark laid the groundwork for a KDD Cup 2024 challenge, attracting thousands of participants and submissions within the first 50 days of the competition. We commit to maintaining CRAG to serve research communities in advancing RAG solutions and general QA solutions.
Abstract:Stratifying patients at risk for postoperative complications may facilitate timely and accurate workups and reduce the burden of adverse events on patients and the health system. Currently, a widely-used surgical risk calculator created by the American College of Surgeons, NSQIP, uses 21 preoperative covariates to assess risk of postoperative complications, but lacks dynamic, real-time capabilities to accommodate postoperative information. We propose a new Hidden Markov Model sequence classifier for analyzing patients' postoperative temperature sequences that incorporates their time-invariant characteristics in both transition probability and initial state probability in order to develop a postoperative "real-time" complication detector. Data from elective Colectomy surgery indicate that our method has improved classification performance compared to 8 other machine learning classifiers when using the full temperature sequence associated with the patients' length of stay. Additionally, within 44 hours after surgery, the performance of the model is close to that of full-length temperature sequence.