Abstract:In this paper we focus on inserting a given human (specifically, a single image of a person) into a novel scene. Our method, which builds on top of Stable Diffusion, yields natural looking images while being highly controllable with text and pose. To accomplish this we need to train on pairs of images, the first a reference image with the person, the second a "target image" showing the same person (with a different pose and possibly in a different background). Additionally we require a text caption describing the new pose relative to that in the reference image. In this paper we present a novel dataset following this criteria, which we create using pairs of frames from human-centric and action-rich videos and employing a multimodal LLM to automatically summarize the difference in human pose for the text captions. We demonstrate that identity preservation is a more challenging task in scenes "in-the-wild", and especially scenes where there is an interaction between persons and objects. Combining the weak supervision from noisy captions, with robust 2D pose improves the quality of person-object interactions.
Abstract:Segmentation localizes objects in an image on a fine-grained per-pixel scale. Segmentation benefits by humans-in-the-loop to provide additional input of objects to segment using a combination of foreground or background clicks. Tasks include photoediting or novel dataset annotation, where human annotators leverage an existing segmentation model instead of drawing raw pixel level annotations. We propose a new segmentation process, Text + Click segmentation, where a model takes as input an image, a text phrase describing a class to segment, and a single foreground click specifying the instance to segment. Compared to previous approaches, we leverage open-vocabulary image-text models to support a wide-range of text prompts. Conditioning segmentations on text prompts improves the accuracy of segmentations on novel or unseen classes. We demonstrate that the combination of a single user-specified foreground click and a text prompt allows a model to better disambiguate overlapping or co-occurring semantic categories, such as "tie", "suit", and "person". We study these results across common segmentation datasets such as refCOCO, COCO, VOC, and OpenImages. Source code available here.