Abstract:In these notes, we prove a recent conjecture posed in the paper by R\"ais\"a, O. et al. [Subsampling is not Magic: Why Large Batch Sizes Work for Differentially Private Stochastic Optimization (2024)]. Theorem 6.2 of the paper asserts that for the Sampled Gaussian Mechanism - a composition of subsampling and additive Gaussian noise, the effective noise level, $\sigma_{\text{eff}} = \frac{\sigma(q)}{q}$, decreases as a function of the subsampling rate $q$. Consequently, larger subsampling rates are preferred for better privacy-utility trade-offs. Our notes provide a rigorous proof of Conjecture 6.3, which was left unresolved in the original paper, thereby completing the proof of Theorem 6.2.
Abstract:We study the Kolmogorov-Arnold Network (KAN), recently proposed as an alternative to the classical Multilayer Perceptron (MLP), in the application for differentially private model training. Using the DP-SGD algorithm, we demonstrate that KAN can be made private in a straightforward manner and evaluated its performance across several datasets. Our results indicate that the accuracy of KAN is not only comparable with MLP but also experiences similar deterioration due to privacy constraints, making it suitable for differentially private model training.