Abstract:The increasing frequency of firearm-related incidents has necessitated advancements in security and surveillance systems, particularly in firearm detection within public spaces. Traditional gun detection methods rely on manual inspections and continuous human monitoring of CCTV footage, which are labor-intensive and prone to high false positive and negative rates. To address these limitations, we propose a novel approach that integrates human pose estimation with weapon appearance recognition using deep learning techniques. Unlike prior studies that focus on either body pose estimation or firearm detection in isolation, our method jointly analyzes posture and weapon presence to enhance detection accuracy in real-world, dynamic environments. To train our model, we curated a diverse dataset comprising images from open-source repositories such as IMFDB and Monash Guns, supplemented with AI-generated and manually collected images from web sources. This dataset ensures robust generalization and realistic performance evaluation under various surveillance conditions. Our research aims to improve the precision and reliability of firearm detection systems, contributing to enhanced public safety and threat mitigation in high-risk areas.
Abstract:The increasing reliance on AI-based security tools in Security Operations Centers (SOCs) has transformed threat detection and response, yet analysts frequently struggle with alert overload, false positives, and lack of contextual relevance. The inability to effectively analyze AI-generated security alerts lead to inefficiencies in incident response and reduces trust in automated decision-making. In this paper, we show results and analysis of our investigation of how SOC analysts navigate AI-based alerts, their challenges with current security tools, and how explainability (XAI) integrated into their security workflows has the potential to become an effective decision support. In this vein, we conducted an industry survey. Using the survey responses, we analyze how security analysts' process, retrieve, and prioritize alerts. Our findings indicate that most analysts have not yet adopted XAI-integrated tools, but they express high interest in attack attribution, confidence scores, and feature contribution explanations to improve interpretability, and triage efficiency. Based on our findings, we also propose practical design recommendations for XAI-enhanced security alert systems, enabling AI-based cybersecurity solutions to be more transparent, interpretable, and actionable.
Abstract:The increasing reliance on machine learning (ML) in computer security, particularly for malware classification, has driven significant advancements. However, the replicability and reproducibility of these results are often overlooked, leading to challenges in verifying research findings. This paper highlights critical pitfalls that undermine the validity of ML research in Android malware detection, focusing on dataset and methodological issues. We comprehensively analyze Android malware detection using two datasets and assess offline and continual learning settings with six widely used ML models. Our study reveals that when properly tuned, simpler baseline methods can often outperform more complex models. To address reproducibility challenges, we propose solutions for improving datasets and methodological practices, enabling fairer model comparisons. Additionally, we open-source our code to facilitate malware analysis, making it extensible for new models and datasets. Our paper aims to support future research in Android malware detection and other security domains, enhancing the reliability and reproducibility of published results.
Abstract:Cyber threats are constantly evolving. Extracting actionable insights from unstructured Cyber Threat Intelligence (CTI) data is essential to guide cybersecurity decisions. Increasingly, organizations like Microsoft, Trend Micro, and CrowdStrike are using generative AI to facilitate CTI extraction. This paper addresses the challenge of automating the extraction of actionable CTI using advancements in Large Language Models (LLMs) and Knowledge Graphs (KGs). We explore the application of state-of-the-art open-source LLMs, including the Llama 2 series, Mistral 7B Instruct, and Zephyr for extracting meaningful triples from CTI texts. Our methodology evaluates techniques such as prompt engineering, the guidance framework, and fine-tuning to optimize information extraction and structuring. The extracted data is then utilized to construct a KG, offering a structured and queryable representation of threat intelligence. Experimental results demonstrate the effectiveness of our approach in extracting relevant information, with guidance and fine-tuning showing superior performance over prompt engineering. However, while our methods prove effective in small-scale tests, applying LLMs to large-scale data for KG construction and Link Prediction presents ongoing challenges.
Abstract:Cyber threat intelligence (CTI) is crucial in today's cybersecurity landscape, providing essential insights to understand and mitigate the ever-evolving cyber threats. The recent rise of Large Language Models (LLMs) have shown potential in this domain, but concerns about their reliability, accuracy, and hallucinations persist. While existing benchmarks provide general evaluations of LLMs, there are no benchmarks that address the practical and applied aspects of CTI-specific tasks. To bridge this gap, we introduce CTIBench, a benchmark designed to assess LLMs' performance in CTI applications. CTIBench includes multiple datasets focused on evaluating knowledge acquired by LLMs in the cyber-threat landscape. Our evaluation of several state-of-the-art models on these tasks provides insights into their strengths and weaknesses in CTI contexts, contributing to a better understanding of LLM capabilities in CTI.
Abstract:Large Language Models (LLMs) have demonstrated potential in cybersecurity applications but have also caused lower confidence due to problems like hallucinations and a lack of truthfulness. Existing benchmarks provide general evaluations but do not sufficiently address the practical and applied aspects of LLM performance in cybersecurity-specific tasks. To address this gap, we introduce the SECURE (Security Extraction, Understanding \& Reasoning Evaluation), a benchmark designed to assess LLMs performance in realistic cybersecurity scenarios. SECURE includes six datasets focussed on the Industrial Control System sector to evaluate knowledge extraction, understanding, and reasoning based on industry-standard sources. Our study evaluates seven state-of-the-art models on these tasks, providing insights into their strengths and weaknesses in cybersecurity contexts, and offer recommendations for improving LLMs reliability as cyber advisory tools.
Abstract:Deep neural networks for classification are vulnerable to adversarial attacks, where small perturbations to input samples lead to incorrect predictions. This susceptibility, combined with the black-box nature of such networks, limits their adoption in critical applications like autonomous driving. Feature-attribution-based explanation methods provide relevance of input features for model predictions on input samples, thus explaining model decisions. However, we observe that both model predictions and feature attributions for input samples are sensitive to noise. We develop a practical method for this characteristic of model prediction and feature attribution to detect adversarial samples. Our method, PASA, requires the computation of two test statistics using model prediction and feature attribution and can reliably detect adversarial samples using thresholds learned from benign samples. We validate our lightweight approach by evaluating the performance of PASA on varying strengths of FGSM, PGD, BIM, and CW attacks on multiple image and non-image datasets. On average, we outperform state-of-the-art statistical unsupervised adversarial detectors on CIFAR-10 and ImageNet by 14\% and 35\% ROC-AUC scores, respectively. Moreover, our approach demonstrates competitive performance even when an adversary is aware of the defense mechanism.
Abstract:Concept drift is a significant challenge for malware detection, as the performance of trained machine learning models degrades over time, rendering them impractical. While prior research in malware concept drift adaptation has primarily focused on active learning, which involves selecting representative samples to update the model, self-training has emerged as a promising approach to mitigate concept drift. Self-training involves retraining the model using pseudo labels to adapt to shifting data distributions. In this research, we propose MORPH -- an effective pseudo-label-based concept drift adaptation method specifically designed for neural networks. Through extensive experimental analysis of Android and Windows malware datasets, we demonstrate the efficacy of our approach in mitigating the impact of concept drift. Our method offers the advantage of reducing annotation efforts when combined with active learning. Furthermore, our method significantly improves over existing works in automated concept drift adaptation for malware detection.
Abstract:Public and commercial companies extensively share cyber threat intelligence (CTI) to prepare systems to defend against emerging cyberattacks. Most used intelligence thus far has been limited to tracking known threat indicators such as IP addresses and domain names as they are easier to extract using regular expressions. Due to the limited long-term usage and difficulty of performing a long-term analysis on indicators, we propose using significantly more robust threat intelligence signals called attack patterns. However, extracting attack patterns at scale is a challenging task. In this paper, we present LADDER, a knowledge extraction framework that can extract text-based attack patterns from CTI reports at scale. The model characterizes attack patterns by capturing phases of an attack in android and enterprise networks. It then systematically maps them to the MITRE ATT\&CK pattern framework. We present several use cases to demonstrate the application of LADDER for SOC analysts in determining the presence of attack vectors belonging to emerging attacks in preparation for defenses in advance.
Abstract:Trust, privacy, and interpretability have emerged as significant concerns for experts deploying deep learning models for security monitoring. Due to their back-box nature, these models cannot provide an intuitive understanding of the machine learning predictions, which are crucial in several decision-making applications, like anomaly detection. Security operations centers have a number of security monitoring tools that analyze logs and generate threat alerts which security analysts inspect. The alerts lack sufficient explanation on why it was raised or the context in which they occurred. Existing explanation methods for security also suffer from low fidelity and low stability and ignore privacy concerns. However, explanations are highly desirable; therefore, we systematize this knowledge on explanation models so they can ensure trust and privacy in security monitoring. Through our collaborative study of security operation centers, security monitoring tools, and explanation techniques, we discuss the strengths of existing methods and concerns vis-a-vis applications, such as security log analysis. We present a pipeline to design interpretable and privacy-preserving system monitoring tools. Additionally, we define and propose quantitative metrics to evaluate methods in explainable security. Finally, we discuss challenges and enlist exciting research directions for explorations.