Abstract:Complex human activity recognition (CHAR) remains a pivotal challenge within ubiquitous computing, especially in the context of smart environments. Existing studies typically require meticulous labeling of both atomic and complex activities, a task that is labor-intensive and prone to errors due to the scarcity and inaccuracies of available datasets. Most prior research has focused on datasets that either precisely label atomic activities or, at minimum, their sequence approaches that are often impractical in real world settings.In response, we introduce VCHAR (Variance-Driven Complex Human Activity Recognition), a novel framework that treats the outputs of atomic activities as a distribution over specified intervals. Leveraging generative methodologies, VCHAR elucidates the reasoning behind complex activity classifications through video-based explanations, accessible to users without prior machine learning expertise. Our evaluation across three publicly available datasets demonstrates that VCHAR enhances the accuracy of complex activity recognition without necessitating precise temporal or sequential labeling of atomic activities. Furthermore, user studies confirm that VCHAR's explanations are more intelligible compared to existing methods, facilitating a broader understanding of complex activity recognition among non-experts.
Abstract:Reinforcement Learning from Human Feedback (RLHF) is popular in large language models (LLMs), whereas traditional Reinforcement Learning (RL) often falls short. Current autonomous driving methods typically utilize either human feedback in machine learning, including RL, or LLMs. Most feedback guides the car agent's learning process (e.g., controlling the car). RLHF is usually applied in the fine-tuning step, requiring direct human "preferences," which are not commonly used in optimizing autonomous driving models. In this research, we innovatively combine RLHF and LLMs to enhance autonomous driving safety. Training a model with human guidance from scratch is inefficient. Our framework starts with a pre-trained autonomous car agent model and implements multiple human-controlled agents, such as cars and pedestrians, to simulate real-life road environments. The autonomous car model is not directly controlled by humans. We integrate both physical and physiological feedback to fine-tune the model, optimizing this process using LLMs. This multi-agent interactive environment ensures safe, realistic interactions before real-world application. Finally, we will validate our model using data gathered from real-life testbeds located in New Jersey and New York City.