Abstract:The performance of modern face recognition systems is a function of the dataset on which they are trained. Most datasets are largely biased toward "near-frontal" views with benign lighting conditions, negatively effecting recognition performance on images that do not meet these criteria. The proposed approach demonstrates how a baseline training set can be augmented to increase pose and lighting variability using semi-synthetic images with simulated pose and lighting conditions. The semi-synthetic images are generated using a fast and robust 3-d shape estimation and rendering pipeline which includes the full head and background. Various methods of incorporating the semi-synthetic renderings into the training procedure of a state of the art deep neural network-based recognition system without modifying the structure of the network itself are investigated. Quantitative results are presented on the challenging IJB-A identification dataset using a state of the art recognition pipeline as a baseline.
Abstract:Face recognition performance evaluation has traditionally focused on one-to-one verification, popularized by the Labeled Faces in the Wild dataset for imagery and the YouTubeFaces dataset for videos. In contrast, the newly released IJB-A face recognition dataset unifies evaluation of one-to-many face identification with one-to-one face verification over templates, or sets of imagery and videos for a subject. In this paper, we study the problem of template adaptation, a form of transfer learning to the set of media in a template. Extensive performance evaluations on IJB-A show a surprising result, that perhaps the simplest method of template adaptation, combining deep convolutional network features with template specific linear SVMs, outperforms the state-of-the-art by a wide margin. We study the effects of template size, negative set construction and classifier fusion on performance, then compare template adaptation to convolutional networks with metric learning, 2D and 3D alignment. Our unexpected conclusion is that these other methods, when combined with template adaptation, all achieve nearly the same top performance on IJB-A for template-based face verification and identification.