Abstract:Unlike traditional educational chatbots that rely on pre-programmed responses, large-language model-driven chatbots, such as ChatGPT, demonstrate remarkable versatility and have the potential to serve as a dynamic resource for addressing student needs from understanding advanced concepts to solving complex problems. This work explores the impact of such technology on student learning in an interdisciplinary, project-oriented data visualization course. Throughout the semester, students engaged with ChatGPT across four distinct projects, including data visualizations and implementing them using a variety of tools including Tableau, D3, and Vega-lite. We collected conversation logs and reflection surveys from the students after each assignment. In addition, we conducted interviews with selected students to gain deeper insights into their overall experiences with ChatGPT. Our analysis examined the advantages and barriers of using ChatGPT, students' querying behavior, the types of assistance sought, and its impact on assignment outcomes and engagement. Based on the findings, we discuss design considerations for an educational solution that goes beyond the basic interface of ChatGPT, specifically tailored for data visualization education.
Abstract:In this paper, we present BubbleView, an alternative methodology for eye tracking using discrete mouse clicks to measure which information people consciously choose to examine. BubbleView is a mouse-contingent, moving-window interface in which participants are presented with a series of blurred images and click to reveal "bubbles" - small, circular areas of the image at original resolution, similar to having a confined area of focus like the eye fovea. Across 10 experiments with 28 different parameter combinations, we evaluated BubbleView on a variety of image types: information visualizations, natural images, static webpages, and graphic designs, and compared the clicks to eye fixations collected with eye-trackers in controlled lab settings. We found that BubbleView clicks can both (i) successfully approximate eye fixations on different images, and (ii) be used to rank image and design elements by importance. BubbleView is designed to collect clicks on static images, and works best for defined tasks such as describing the content of an information visualization or measuring image importance. BubbleView data is cleaner and more consistent than related methodologies that use continuous mouse movements. Our analyses validate the use of mouse-contingent, moving-window methodologies as approximating eye fixations for different image and task types.
Abstract:Knowing where people look and click on visual designs can provide clues about how the designs are perceived, and where the most important or relevant content lies. The most important content of a visual design can be used for effective summarization or to facilitate retrieval from a database. We present automated models that predict the relative importance of different elements in data visualizations and graphic designs. Our models are neural networks trained on human clicks and importance annotations on hundreds of designs. We collected a new dataset of crowdsourced importance, and analyzed the predictions of our models with respect to ground truth importance and human eye movements. We demonstrate how such predictions of importance can be used for automatic design retargeting and thumbnailing. User studies with hundreds of MTurk participants validate that, with limited post-processing, our importance-driven applications are on par with, or outperform, current state-of-the-art methods, including natural image saliency. We also provide a demonstration of how our importance predictions can be built into interactive design tools to offer immediate feedback during the design process.