Abstract:This paper presents the design and implementation of FLIPS, a middleware system to manage data and participant heterogeneity in federated learning (FL) training workloads. In particular, we examine the benefits of label distribution clustering on participant selection in federated learning. FLIPS clusters parties involved in an FL training job based on the label distribution of their data apriori, and during FL training, ensures that each cluster is equitably represented in the participants selected. FLIPS can support the most common FL algorithms, including FedAvg, FedProx, FedDyn, FedOpt and FedYogi. To manage platform heterogeneity and dynamic resource availability, FLIPS incorporates a straggler management mechanism to handle changing capacities in distributed, smart community applications. Privacy of label distributions, clustering and participant selection is ensured through a trusted execution environment (TEE). Our comprehensive empirical evaluation compares FLIPS with random participant selection, as well as two other "smart" selection mechanisms - Oort and gradient clustering using two real-world datasets, two different non-IID distributions and three common FL algorithms (FedYogi, FedProx and FedAvg). We demonstrate that FLIPS significantly improves convergence, achieving higher accuracy by 17 - 20 % with 20 - 60 % lower communication costs, and these benefits endure in the presence of straggler participants.
Abstract:Existing federated learning models that follow the standard risk minimization paradigm of machine learning often fail to generalize in the presence of spurious correlations in the training data. In many real-world distributed settings, spurious correlations exist due to biases and data sampling issues on distributed devices or clients that can erroneously influence models. Current generalization approaches are designed for centralized training and attempt to identify features that have an invariant causal relationship with the target, thereby reducing the effect of spurious features. However, such invariant risk minimization approaches rely on apriori knowledge of training data distributions which is hard to obtain in many applications. In this work, we present a generalizable federated learning framework called FedGen, which allows clients to identify and distinguish between spurious and invariant features in a collaborative manner without prior knowledge of training distributions. We evaluate our approach on real-world datasets from different domains and show that FedGen results in models that achieve significantly better generalization than current federated learning approaches.
Abstract:This paper proposes a system, entitled Concealer that allows sharing time-varying spatial data (e.g., as produced by sensors) in encrypted form to an untrusted third-party service provider to provide location-based applications (involving aggregation queries over selected regions over time windows) to users. Concealer exploits carefully selected encryption techniques to use indexes supported by database systems and combines ways to add fake tuples in order to realize an efficient system that protects against leakage based on output-size. Thus, the design of Concealer overcomes two limitations of existing symmetric searchable encryption (SSE) techniques: (i) it avoids the need of specialized data structures that limit usability/practicality of SSE in large scale deployments, and (ii) it avoids information leakages based on the output-size, which may leak data distributions. Experimental results validate the efficiency of the proposed algorithms over a spatial time-series dataset (collected from a smart space) and TPC-H datasets, each of 136 Million rows, the size of which prior approaches have not scaled to.
Abstract:This paper focuses on the new privacy challenges that arise in smart homes. Specifically, the paper focuses on inferring the user's activities -- which may, in turn, lead to the user's privacy -- via inferences through device activities and network traffic analysis. We develop techniques that are based on a cryptographically secure token circulation in a ring network consisting of smart home devices to prevent inferences from device activities, via device workflow, i.e., inferences from a coordinated sequence of devices' actuation. The solution hides the device activity and corresponding channel activities, and thus, preserve the individual's activities. We also extend our solution to deal with a large number of devices and devices that produce large-sized data by implementing parallel rings. Our experiments also evaluate the performance in terms of communication overheads of the proposed approach and the obtained privacy.
Abstract:Many application domains require representing interrelated real-world activities and/or evolving physical phenomena. In the crisis response domain, for instance, one may be interested in representing the state of the unfolding crisis (e.g., forest fire), the progress of the response activities such as evacuation and traffic control, and the state of the crisis site(s). Such a situation representation can then be used to support a multitude of applications including situation monitoring, analysis, and planning. In this paper, we make a case for an event based representation of situations where events are defined to be domain-specific significant occurrences in space and time. We argue that events offer a unifying and powerful abstraction to building situational awareness applications. We identify challenges in building an Event Management System (EMS) for which traditional data and knowledge management systems prove to be limited and suggest possible directions and technologies to address the challenges.