Abstract:Since the emergence of Large Language Models (LLMs), the challenge of effectively leveraging their potential in healthcare has taken center stage. A critical barrier to using LLMs for extracting insights from unstructured clinical notes lies in the prompt engineering process. Despite its pivotal role in determining task performance, a clear framework for prompt optimization remains absent. Current methods to address this gap take either a manual prompt refinement approach, where domain experts collaborate with prompt engineers to create an optimal prompt, which is time-intensive and difficult to scale, or through employing automatic prompt optimizing approaches, where the value of the input of domain experts is not fully realized. To address this, we propose StructEase, a novel framework that bridges the gap between automation and the input of human expertise in prompt engineering. A core innovation of the framework is SamplEase, an iterative sampling algorithm that identifies high-value cases where expert feedback drives significant performance improvements. This approach minimizes expert intervention, to effectively enhance classification outcomes. This targeted approach reduces labeling redundancy, mitigates human error, and enhances classification outcomes. We evaluated the performance of StructEase using a dataset of de-identified clinical narratives from the US National Electronic Injury Surveillance System (NEISS), demonstrating significant gains in classification performance compared to current methods. Our findings underscore the value of expert integration in LLM workflows, achieving notable improvements in F1 score while maintaining minimal expert effort. By combining transparency, flexibility, and scalability, StructEase sets the foundation for a framework to integrate expert input into LLM workflows in healthcare and beyond.
Abstract:The digital era has seen a marked increase in financial fraud. edge ML emerged as a promising solution for smartphone payment services fraud detection, enabling the deployment of ML models directly on edge devices. This approach enables a more personalized real-time fraud detection. However, a significant gap in current research is the lack of a robust system for monitoring data distribution shifts in these distributed edge ML applications. Our work bridges this gap by introducing a novel open-source framework designed for continuous monitoring of data distribution shifts on a network of edge devices. Our system includes an innovative calculation of the Kolmogorov-Smirnov (KS) test over a distributed network of edge devices, enabling efficient and accurate monitoring of users behavior shifts. We comprehensively evaluate the proposed framework employing both real-world and synthetic financial transaction datasets and demonstrate the framework's effectiveness.
Abstract:ML models are increasingly being pushed to mobile devices, for low-latency inference and offline operation. However, once the models are deployed, it is hard for ML operators to track their accuracy, which can degrade unpredictably (e.g., due to data drift). We design the first end-to-end system for continuously monitoring and adapting models on mobile devices without requiring feedback from users. Our key observation is that often model degradation is due to a specific root cause, which may affect a large group of devices. Therefore, once the system detects a consistent degradation across a large number of devices, it employs a root cause analysis to determine the origin of the problem and applies a cause-specific adaptation. We evaluate the system on two computer vision datasets, and show it consistently boosts accuracy compared to existing approaches. On a dataset containing photos collected from driving cars, our system improves the accuracy on average by 15%.