Abstract:Prediction of mortality in intensive care unit (ICU) patients is an important task in critical care medicine. Prior work in creating mortality risk models falls into two major categories: domain-expert-created scoring systems, and black box machine learning (ML) models. Both of these have disadvantages: black box models are unacceptable for use in hospitals, whereas manual creation of models (including hand-tuning of logistic regression parameters) relies on humans to perform high-dimensional constrained optimization, which leads to a loss in performance. In this work, we bridge the gap between accurate black box models and hand-tuned interpretable models. We build on modern interpretable ML techniques to design accurate and interpretable mortality risk scores. We leverage the largest existing public ICU monitoring datasets, namely the MIMIC III and eICU datasets. By evaluating risk across medical centers, we are able to study generalization across domains. In order to customize our risk score models, we develop a new algorithm, GroupFasterRisk, which has several important benefits: (1) it uses hard sparsity constraint, allowing users to directly control the number of features; (2) it incorporates group sparsity to allow more cohesive models; (3) it allows for monotonicity correction on models for including domain knowledge; (4) it produces many equally-good models at once, which allows domain experts to choose among them. GroupFasterRisk creates its risk scores within hours, even on the large datasets we study here. GroupFasterRisk's risk scores perform better than risk scores currently used in hospitals, and have similar prediction performance to black box ML models (despite being much sparser). Because GroupFasterRisk produces a variety of risk scores and handles constraints, it allows design flexibility, which is the key enabler of practical and trustworthy model creation.
Abstract:Electronic Health Records (EHRs) are rich sources of patient-level data, including laboratory tests, medications, and diagnoses, offering valuable resources for medical data analysis. However, concerns about privacy often restrict access to EHRs, hindering downstream analysis. Researchers have explored various methods for generating privacy-preserving EHR data. In this study, we introduce a new method for generating diverse and realistic synthetic EHR time series data using Denoising Diffusion Probabilistic Models (DDPM). We conducted experiments on six datasets, comparing our proposed method with seven existing methods. Our results demonstrate that our approach significantly outperforms all existing methods in terms of data utility while requiring less training effort. Our approach also enhances downstream medical data analysis by providing diverse and realistic synthetic EHR data.
Abstract:We study fair multi-objective reinforcement learning in which an agent must learn a policy that simultaneously achieves high reward on multiple dimensions of a vector-valued reward. Motivated by the fair resource allocation literature, we model this as an expected welfare maximization problem, for some non-linear fair welfare function of the vector of long-term cumulative rewards. One canonical example of such a function is the Nash Social Welfare, or geometric mean, the log transform of which is also known as the Proportional Fairness objective. We show that even approximately optimal optimization of the expected Nash Social Welfare is computationally intractable even in the tabular case. Nevertheless, we provide a novel adaptation of Q-learning that combines non-linear scalarized learning updates and non-stationary action selection to learn effective policies for optimizing nonlinear welfare functions. We show that our algorithm is provably convergent, and we demonstrate experimentally that our approach outperforms techniques based on linear scalarization, mixtures of optimal linear scalarizations, or stationary action selection for the Nash Social Welfare Objective.