Abstract:Graph Neural Networks (GNNs) have shown impressive performance in graph representation learning, but they face challenges in capturing long-range dependencies due to their limited expressive power. To address this, Graph Transformers (GTs) were introduced, utilizing self-attention mechanism to effectively model pairwise node relationships. Despite their advantages, GTs suffer from quadratic complexity w.r.t. the number of nodes in the graph, hindering their applicability to large graphs. In this work, we present Graph-Enhanced Contextual Operator (GECO), a scalable and effective alternative to GTs that leverages neighborhood propagation and global convolutions to effectively capture local and global dependencies in quasilinear time. Our study on synthetic datasets reveals that GECO reaches 169x speedup on a graph with 2M nodes w.r.t. optimized attention. Further evaluations on diverse range of benchmarks showcase that GECO scales to large graphs where traditional GTs often face memory and time limitations. Notably, GECO consistently achieves comparable or superior quality compared to baselines, improving the SOTA up to 4.5%, and offering a scalable and effective solution for large-scale graph learning.
Abstract:Significant computational resources are required to train Graph Neural Networks (GNNs) at a large scale, and the process is highly data-intensive. One of the most effective ways to reduce resource requirements is minibatch training coupled with graph sampling. GNNs have the unique property that items in a minibatch have overlapping data. However, the commonly implemented Independent Minibatching approach assigns each Processing Element (PE) its own minibatch to process, leading to duplicated computations and input data access across PEs. This amplifies the Neighborhood Explosion Phenomenon (NEP), which is the main bottleneck limiting scaling. To reduce the effects of NEP in the multi-PE setting, we propose a new approach called Cooperative Minibatching. Our approach capitalizes on the fact that the size of the sampled subgraph is a concave function of the batch size, leading to significant reductions in the amount of work per seed vertex as batch sizes increase. Hence, it is favorable for processors equipped with a fast interconnect to work on a large minibatch together as a single larger processor, instead of working on separate smaller minibatches, even though global batch size is identical. We also show how to take advantage of the same phenomenon in serial execution by generating dependent consecutive minibatches. Our experimental evaluations show up to 4x bandwidth savings for fetching vertex embeddings, by simply increasing this dependency without harming model convergence. Combining our proposed approaches, we achieve up to 64% speedup over Independent Minibatching on single-node multi-GPU systems.