Abstract:Split-learning (SL) has recently gained popularity due to its inherent privacy-preserving capabilities and ability to enable collaborative inference for devices with limited computational power. Standard SL algorithms assume an ideal underlying digital communication system and ignore the problem of scarce communication bandwidth. However, for a large number of agents, limited bandwidth resources, and time-varying communication channels, the communication bandwidth can become the bottleneck. To address this challenge, in this work, we propose a novel SL framework to solve the remote inference problem that introduces an additional layer at the agent side and constrains the choices of the weights and the biases to ensure over the air aggregation. Hence, the proposed approach maintains constant communication cost with respect to the number of agents enabling remote inference under limited bandwidth. Numerical results show that our proposed algorithm significantly outperforms the digital implementation in terms of communication-efficiency, especially as the number of agents grows large.
Abstract:Today's intelligent applications can achieve high performance accuracy using machine learning (ML) techniques, such as deep neural networks (DNNs). Traditionally, in a remote DNN inference problem, an edge device transmits raw data to a remote node that performs the inference task. However, this may incur high transmission energy costs and puts data privacy at risk. In this paper, we propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes. The time-varying representation accounts for time-varying channels and can significantly reduce the total energy at the edge device while maintaining high accuracy (low loss). We implement our approach in an image classification task using the MNIST dataset, and the system environment is simulated as a trajectory navigation scenario to emulate different channel conditions. Numerical simulations show that our proposed solution results in minimal energy consumption and $CO_2$ emission compared to the considered baselines while exhibiting robust performance across different channel conditions and bandwidth regime choices.
Abstract:Wirelessly streaming high quality 360 degree videos is still a challenging problem. When there are many users watching different 360 degree videos and competing for the computing and communication resources, the streaming algorithm at hand should maximize the average quality of experience (QoE) while guaranteeing a minimum rate for each user. In this paper, we propose a \emph{cross layer} optimization approach that maximizes the available rate to each user and efficiently uses it to maximize users' QoE. Particularly, we consider a tile based 360 degree video streaming, and we optimize a QoE metric that balances the tradeoff between maximizing each user's QoE and ensuring fairness among users. We show that the problem can be decoupled into two interrelated subproblems: (i) a physical layer subproblem whose objective is to find the download rate for each user, and (ii) an application layer subproblem whose objective is to use that rate to find a quality decision per tile such that the user's QoE is maximized. We prove that the physical layer subproblem can be solved optimally with low complexity and an actor-critic deep reinforcement learning (DRL) is proposed to leverage the parallel training of multiple independent agents and solve the application layer subproblem. Extensive experiments reveal the robustness of our scheme and demonstrate its significant performance improvement compared to several baseline algorithms.