Abstract:The Orientation Distribution Function (ODF) characterizes key brain microstructural properties and plays an important role in understanding brain structural connectivity. Recent works introduced Implicit Neural Representation (INR) based approaches to form a spatially aware continuous estimate of the ODF field and demonstrated promising results in key tasks of interest when compared to conventional discrete approaches. However, traditional INR methods face difficulties when scaling to large-scale images, such as modern ultra-high-resolution MRI scans, posing challenges in learning fine structures as well as inefficiencies in training and inference speed. In this work, we propose HashEnc, a grid-hash-encoding-based estimation of the ODF field and demonstrate its effectiveness in retaining structural and textural features. We show that HashEnc achieves a 10% enhancement in image quality while requiring 3x less computational resources than current methods. Our code can be found at https://github.com/MunzerDw/NODF-HashEnc.
Abstract:3D question answering is a young field in 3D vision-language that is yet to be explored. Previous methods are limited to a pre-defined answer space and cannot generate answers naturally. In this work, we pivot the question answering task to a sequence generation task to generate free-form natural answers for questions in 3D scenes (Gen3DQA). To this end, we optimize our model directly on the language rewards to secure the global sentence semantics. Here, we also adapt a pragmatic language understanding reward to further improve the sentence quality. Our method sets a new SOTA on the ScanQA benchmark (CIDEr score 72.22/66.57 on the test sets).