Abstract:An intent modelling and inference framework is presented to assist the defense planning for protecting a geo-fence against unauthorized flights. First, a novel mathematical definition for the intent of an uncrewed aircraft system (UAS) is presented. The concepts of critical waypoints and critical waypoint patterns are introduced and associated with a motion process to fully characterize an intent. This modelling framework consists of representations of a UAS mission planner, used to plan the aircraft's motion sequence, as well as a defense planner, defined to protect the geo-fence. It is applicable to autonomous, semi-autonomous, and piloted systems in 2D and 3D environments with obstacles. The framework is illustrated by defining a library of intents for a security application. Detection and tracking of the target are presumed for formulating the intent inference problem. Multiple formulations of the decision maker's objective are discussed as part of a deep-learning-based methodology. Further, a multi-modal dynamic model for characterizing the UAS flight is discussed. This is later utilized to extract features using the interacting multiple model (IMM) filter for training the intent classifier. Finally, as part of the simulation study, an attention-based bi-directional long short-term memory (Bi-LSTM) network for intent inference is presented. The simulation experiments illustrate various aspects of the framework, including trajectory generation, radar measurement simulation, etc., in 2D and 3D environments.
Abstract:Depth completion and object detection are two crucial tasks often used for aerial 3D mapping, path planning, and collision avoidance of Uncrewed Aerial Vehicles (UAVs). Common solutions include using measurements from a LiDAR sensor; however, the generated point cloud is often sparse and irregular and limits the system's capabilities in 3D rendering and safety-critical decision-making. To mitigate this challenge, information from other sensors on the UAV (viz., a camera used for object detection) is utilized to help the depth completion process generate denser 3D models. Performing both aerial depth completion and object detection tasks while fusing the data from the two sensors poses a challenge to resource efficiency. We address this challenge by proposing a novel approach to jointly execute the two tasks in a single pass. The proposed method is based on an encoder-focused multi-task learning model that exposes the two tasks to jointly learned features. We demonstrate how semantic expectations of the objects in the scene learned by the object detection pathway can boost the performance of the depth completion pathway while placing the missing depth values. Experimental results show that the proposed multi-task network outperforms its single-task counterpart, particularly when exposed to defective inputs.
Abstract:We curated WikiPII, an automatically labeled dataset composed of Wikipedia biography pages, annotated for personal information extraction. Although automatic annotation can lead to a high degree of label noise, it is an inexpensive process and can generate large volumes of annotated documents. We trained a BERT-based NER model with WikiPII and showed that with an adequately large training dataset, the model can significantly decrease the cost of manual information extraction, despite the high level of label noise. In a similar approach, organizations can leverage text mining techniques to create customized annotated datasets from their historical data without sharing the raw data for human annotation. Also, we explore collaborative training of NER models through federated learning when the annotation is noisy. Our results suggest that depending on the level of trust to the ML operator and the volume of the available data, distributed training can be an effective way of training a personal information identifier in a privacy-preserved manner. Research material is available at https://github.com/ratmcu/wikipiifed.