Abstract:Dependable visual drone detection is crucial for the secure integration of drones into the airspace. However, drone detection accuracy is significantly affected by domain shifts due to environmental changes, varied points of view, and background shifts. To address these challenges, we present the DrIFT dataset, specifically developed for visual drone detection under domain shifts. DrIFT includes fourteen distinct domains, each characterized by shifts in point of view, synthetic-to-real data, season, and adverse weather. DrIFT uniquely emphasizes background shift by providing background segmentation maps to enable background-wise metrics and evaluation. Our new uncertainty estimation metric, MCDO-map, features lower postprocessing complexity, surpassing traditional methods. We use the MCDO-map in our uncertainty-aware unsupervised domain adaptation method, demonstrating superior performance to SOTA unsupervised domain adaptation techniques. The dataset is available at: https://github.com/CARG-uOttawa/DrIFT.git.
Abstract:An intent modelling and inference framework is presented to assist the defense planning for protecting a geo-fence against unauthorized flights. First, a novel mathematical definition for the intent of an uncrewed aircraft system (UAS) is presented. The concepts of critical waypoints and critical waypoint patterns are introduced and associated with a motion process to fully characterize an intent. This modelling framework consists of representations of a UAS mission planner, used to plan the aircraft's motion sequence, as well as a defense planner, defined to protect the geo-fence. It is applicable to autonomous, semi-autonomous, and piloted systems in 2D and 3D environments with obstacles. The framework is illustrated by defining a library of intents for a security application. Detection and tracking of the target are presumed for formulating the intent inference problem. Multiple formulations of the decision maker's objective are discussed as part of a deep-learning-based methodology. Further, a multi-modal dynamic model for characterizing the UAS flight is discussed. This is later utilized to extract features using the interacting multiple model (IMM) filter for training the intent classifier. Finally, as part of the simulation study, an attention-based bi-directional long short-term memory (Bi-LSTM) network for intent inference is presented. The simulation experiments illustrate various aspects of the framework, including trajectory generation, radar measurement simulation, etc., in 2D and 3D environments.
Abstract:UAV-based intelligent data acquisition for 3D reconstruction and monitoring of infrastructure has been experiencing an increasing surge of interest due to the recent advancements in image processing and deep learning-based techniques. View planning is an essential part of this task that dictates the information capture strategy and heavily impacts the quality of the 3D model generated from the captured data. Recent methods have used prior knowledge or partial reconstruction of the target to accomplish view planning for active reconstruction; the former approach poses a challenge for complex or newly identified targets while the latter is computationally expensive. In this work, we present Bag-of-Views (BoV), a fully appearance-based model used to assign utility to the captured views for both offline dataset refinement and online next-best-view (NBV) planning applications targeting the task of 3D reconstruction. With this contribution, we also developed the View Planning Toolbox (VPT), a lightweight package for training and testing machine learning-based view planning frameworks, custom view dataset generation of arbitrary 3D scenes, and 3D reconstruction. Through experiments which pair a BoV-based reinforcement learning model with VPT, we demonstrate the efficacy of our model in reducing the number of required views for high-quality reconstructions in dataset refinement and NBV planning.
Abstract:Depth completion and object detection are two crucial tasks often used for aerial 3D mapping, path planning, and collision avoidance of Uncrewed Aerial Vehicles (UAVs). Common solutions include using measurements from a LiDAR sensor; however, the generated point cloud is often sparse and irregular and limits the system's capabilities in 3D rendering and safety-critical decision-making. To mitigate this challenge, information from other sensors on the UAV (viz., a camera used for object detection) is utilized to help the depth completion process generate denser 3D models. Performing both aerial depth completion and object detection tasks while fusing the data from the two sensors poses a challenge to resource efficiency. We address this challenge by proposing a novel approach to jointly execute the two tasks in a single pass. The proposed method is based on an encoder-focused multi-task learning model that exposes the two tasks to jointly learned features. We demonstrate how semantic expectations of the objects in the scene learned by the object detection pathway can boost the performance of the depth completion pathway while placing the missing depth values. Experimental results show that the proposed multi-task network outperforms its single-task counterpart, particularly when exposed to defective inputs.