Abstract:Neural Architecture Search (NAS), a framework which automates the task of designing neural networks, has recently been actively studied in the field of deep learning. However, there are only a few NAS methods suitable for 3D medical image segmentation. Medical 3D images are generally very large; thus it is difficult to apply previous NAS methods due to their GPU computational burden and long training time. We propose the resource-optimized neural architecture search method which can be applied to 3D medical segmentation tasks in a short training time (1.39 days for 1GB dataset) using a small amount of computation power (one RTX 2080Ti, 10.8GB GPU memory). Excellent performance can also be achieved without retraining(fine-tuning) which is essential in most NAS methods. These advantages can be achieved by using a reinforcement learning-based controller with parameter sharing and focusing on the optimal search space configuration of macro search rather than micro search. Our experiments demonstrate that the proposed NAS method outperforms manually designed networks with state-of-the-art performance in 3D medical image segmentation.
Abstract:To overcome the poor scalability of convolutional neural network, recurrent attention model(RAM) selectively choose what and where to look on the image. By directing recurrent attention model how to look the image, RAM can be even more successful in that the given clue narrow down the scope of the possible focus zone. In this perspective, this work proposes clued recurrent attention model (CRAM) which add clue or constraint on the RAM better problem solving. CRAM follows encoder-decoder framework, encoder utilizes recurrent attention model with spatial transformer network and decoder which varies depending on the task. To ensure the performance, CRAM tackles two computer vision task. One is the image classification task, with clue given as the binary image saliency which indicates the approximate location of object. The other is the inpainting task, with clue given as binary mask which indicates the occluded part. In both tasks, CRAM shows better performance than existing methods showing the successful extension of RAM.
Abstract:In this paper, we propose Squeezed Convolutional Variational AutoEncoder (SCVAE) for anomaly detection in time series data for Edge Computing in Industrial Internet of Things (IIoT). The proposed model is applied to labeled time series data from UCI datasets for exact performance evaluation, and applied to real world data for indirect model performance comparison. In addition, by comparing the models before and after applying Fire Modules from SqueezeNet, we show that model size and inference times are reduced while similar levels of performance is maintained.