Abstract:In recent years, researchers have attempted to exploit social relations to improve the performance in recommendation systems. Generally, most existing social recommendation methods heavily depends on substantial domain knowledge and expertise in primary recommendation tasks for designing useful auxiliary tasks. Meanwhile, Self-Supervised Learning (SSL) recently has received considerable attention in the field of recommendation, since it can provide self-supervision signals in assisting the improvement of target recommendation systems by constructing self-supervised auxiliary tasks from raw data without human-annotated labels. Despite the great success, these SSL-based social recommendations are insufficient to adaptively balance various self-supervised auxiliary tasks, since assigning equal weights on various auxiliary tasks can result in sub-optimal recommendation performance, where different self-supervised auxiliary tasks may contribute differently to improving the primary social recommendation across different datasets. To address this issue, in this work, we propose Adaptive Self-supervised Learning for Social Recommendations (AdasRec) by taking advantage of various self-supervised auxiliary tasks. More specifically, an adaptive weighting mechanism is proposed to learn adaptive weights for various self-supervised auxiliary tasks, so as to balance the contribution of such self-supervised auxiliary tasks for enhancing representation learning in social recommendations. The adaptive weighting mechanism is used to assign different weights on auxiliary tasks to achieve an overall weighting of the entire auxiliary tasks and ultimately assist the primary recommendation task, achieved by a meta learning optimization problem with an adaptive weighting network. Comprehensive experiments on various real-world datasets are constructed to verify the effectiveness of our proposed method.
Abstract:While deep learning has achieved great success on various tasks, the task-specific model training notoriously relies on a large volume of labeled data. Recently, a new training paradigm of ``pre-train, prompt, predict'' has been proposed to improve model generalization ability with limited labeled data. The main idea is that, based on a pre-trained model, the prompting function uses a template to augment input samples with indicative context and reformalizes the target task to one of the pre-training tasks. In this survey, we provide a unique review of prompting methods from the graph perspective. Graph data has served as structured knowledge repositories in various systems by explicitly modeling the interaction between entities. Compared with traditional methods, graph prompting functions could induce task-related context and apply templates with structured knowledge. The pre-trained model is then adaptively generalized for future samples. In particular, we introduce the basic concepts of graph prompt learning, organize the existing work of designing graph prompting functions, and describe their applications and challenges to a variety of machine learning problems. This survey attempts to bridge the gap between structured graphs and prompt design to facilitate future methodology development.