Abstract:Turn-taking, aiming to decide when the next speaker can start talking, is an essential component in building human-robot spoken dialogue systems. Previous studies indicate that multimodal cues can facilitate this challenging task. However, due to the paucity of public multimodal datasets, current methods are mostly limited to either utilizing unimodal features or simplistic multimodal ensemble models. Besides, the inherent class imbalance in real scenario, e.g. sentence ending with short pause will be mostly regarded as the end of turn, also poses great challenge to the turn-taking decision. In this paper, we first collect a large-scale annotated corpus for turn-taking with over 5,000 real human-robot dialogues in speech and text modalities. Then, a novel gated multimodal fusion mechanism is devised to utilize various information seamlessly for turn-taking prediction. More importantly, to tackle the data imbalance issue, we design a simple yet effective data augmentation method to construct negative instances without supervision and apply contrastive learning to obtain better feature representations. Extensive experiments are conducted and the results demonstrate the superiority and competitiveness of our model over several state-of-the-art baselines.
Abstract:Building Spoken Language Understanding (SLU) robust to Automatic Speech Recognition (ASR) errors is an essential issue for various voice-enabled virtual assistants. Considering that most ASR errors are caused by phonetic confusion between similar-sounding expressions, intuitively, leveraging the phoneme sequence of speech can complement ASR hypothesis and enhance the robustness of SLU. This paper proposes a novel model with Cross Attention for SLU (denoted as CASLU). The cross attention block is devised to catch the fine-grained interactions between phoneme and word embeddings in order to make the joint representations catch the phonetic and semantic features of input simultaneously and for overcoming the ASR errors in downstream natural language understanding (NLU) tasks. Extensive experiments are conducted on three datasets, showing the effectiveness and competitiveness of our approach. Additionally, We also validate the universality of CASLU and prove its complementarity when combining with other robust SLU techniques.