Abstract:Video summarization helps turn long videos into clear, concise representations that are easier to review, document, and analyze, especially in high-stakes domains like surgical training. Prior work has progressed from using basic visual features like color, motion, and structural changes to using pre-trained vision-language models that can better understand what's happening in the video (semantics) and capture temporal flow, resulting in more context-aware video summarization. We propose a three-stage framework, PRISM: Procedural Representation via Integrated Semantic and Multimodal analysis, that produces semantically grounded video summaries. PRISM combines adaptive visual sampling, label-driven keyframe anchoring, and contextual validation using a large language model (LLM). Our method ensures that selected frames reflect meaningful and procedural transitions while filtering out generic or hallucinated content, resulting in contextually coherent summaries across both domain-specific and instructional videos. We evaluate our method on instructional and activity datasets, using reference summaries for instructional videos. Despite sampling fewer than 5% of the original frames, our summaries retain 84% semantic content while improving over baselines by as much as 33%. Our approach generalizes across procedural and domain-specific video tasks, achieving strong performance with both semantic alignment and precision.
Abstract:Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.